import copy import io import socket import subprocess from concurrent.futures import ThreadPoolExecutor from pathlib import Path from typing import Any, Dict, Generator, List import numpy as np import pytest from sklearn.datasets import make_blobs, make_regression from sklearn.metrics import accuracy_score TESTS_DIR = Path(__file__).absolute().parent @pytest.fixture(scope="module") def executable(pytestconfig) -> str: """Returns the path to the lightgbm executable.""" return pytestconfig.getoption("execfile") def _find_random_open_port() -> int: """Find a random open port on localhost.""" with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s: s.bind(("", 0)) port = s.getsockname()[1] return port # noqa: RET504 def _generate_n_ports(n: int) -> Generator[int, None, None]: return (_find_random_open_port() for _ in range(n)) def _write_dict(d: Dict, file: io.TextIOWrapper) -> None: for k, v in d.items(): file.write(f"{k} = {v}\n") def create_data(task: str, n_samples: int = 1_000) -> np.ndarray: """Create the appropriate data for the task. The data is returned as a numpy array with the label as the first column. """ if task == "binary-classification": centers = [[-4, -4], [4, 4]] X, y = make_blobs(n_samples, centers=centers, random_state=42) elif task == "regression": X, y = make_regression(n_samples, n_features=4, n_informative=2, random_state=42) return np.hstack([y.reshape(-1, 1), X]) class DistributedMockup: """Simulate distributed training.""" default_train_config = { "task": "train", "pre_partition": True, "machine_list_file": TESTS_DIR / "mlist.txt", "tree_learner": "data", "force_row_wise": True, "verbose": 0, "num_boost_round": 20, "num_leaves": 15, "num_threads": 2, } default_predict_config = { "task": "predict", "data": TESTS_DIR / "train.txt", "input_model": TESTS_DIR / "model0.txt", "output_result": TESTS_DIR / "predictions.txt", } def __init__(self, executable: str): self.executable = executable def worker_train(self, i: int) -> subprocess.CompletedProcess: """Start the training process on the `i`-th worker.""" config_path = TESTS_DIR / f"train{i}.conf" cmd = [self.executable, f"config={config_path}"] return subprocess.run(cmd, check=True) def _set_ports(self) -> None: """Randomly assign a port for training to each worker and save all ports to mlist.txt.""" ports = set(_generate_n_ports(self.n_workers)) i = 0 max_tries = 100 while i < max_tries and len(ports) < self.n_workers: n_ports_left = self.n_workers - len(ports) candidates = _generate_n_ports(n_ports_left) ports.update(candidates) i += 1 if i == max_tries: raise RuntimeError("Unable to find non-colliding ports.") self.listen_ports = list(ports) with open(TESTS_DIR / "mlist.txt", "wt") as f: for port in self.listen_ports: f.write(f"127.0.0.1 {port}\n") def _write_data(self, partitions: List[np.ndarray]) -> None: """Write all training data as train.txt and each training partition as train{i}.txt.""" all_data = np.vstack(partitions) np.savetxt(str(TESTS_DIR / "train.txt"), all_data, delimiter=",") for i, partition in enumerate(partitions): np.savetxt(str(TESTS_DIR / f"train{i}.txt"), partition, delimiter=",") def fit(self, partitions: List[np.ndarray], train_config: Dict) -> None: """Run the distributed training process on a single machine. For each worker i: 1. The i-th partition is saved as train{i}.txt. 2. A random port is assigned for training. 3. A configuration file train{i}.conf is created. 4. The lightgbm binary is called with config=train{i}.conf in another thread. 5. The trained model is saved as model{i}.txt. Each model file only differs in data and local_listen_port. The whole training set is saved as train.txt. """ self.train_config = copy.deepcopy(self.default_train_config) self.train_config.update(train_config) self.n_workers = self.train_config["num_machines"] self._set_ports() self._write_data(partitions) self.label_ = np.hstack([partition[:, 0] for partition in partitions]) futures = [] with ThreadPoolExecutor(max_workers=self.n_workers) as executor: for i in range(self.n_workers): self.write_train_config(i) train_future = executor.submit(self.worker_train, i) futures.append(train_future) results = [f.result() for f in futures] for result in results: if result.returncode != 0: raise RuntimeError("Error in training") def predict(self, predict_config: Dict[str, Any]) -> np.ndarray: """Compute the predictions using the model created in the fit step. predict_config is used to predict the training set train.txt The predictions are saved as predictions.txt and are then loaded to return them as a numpy array. """ self.predict_config = copy.deepcopy(self.default_predict_config) self.predict_config.update(predict_config) config_path = TESTS_DIR / "predict.conf" with open(config_path, "wt") as file: _write_dict(self.predict_config, file) cmd = [self.executable, f"config={config_path}"] result = subprocess.run(cmd, check=True) if result.returncode != 0: raise RuntimeError("Error in prediction") return np.loadtxt(str(TESTS_DIR / "predictions.txt")) def write_train_config(self, i: int) -> None: """Create a file train{i}.conf with the required configuration to train. Each worker gets a different port and piece of the data, the rest are the model parameters contained in `self.config`. """ with open(TESTS_DIR / f"train{i}.conf", "wt") as file: output_model = TESTS_DIR / f"model{i}.txt" data = TESTS_DIR / f"train{i}.txt" file.write(f"output_model = {output_model}\n") file.write(f"local_listen_port = {self.listen_ports[i]}\n") file.write(f"data = {data}\n") _write_dict(self.train_config, file) def test_classifier(executable): """Test the classification task.""" num_machines = 2 data = create_data(task="binary-classification") partitions = np.array_split(data, num_machines) train_params = { "objective": "binary", "num_machines": num_machines, } clf = DistributedMockup(executable) clf.fit(partitions, train_params) y_probas = clf.predict(predict_config={}) y_pred = y_probas > 0.5 assert accuracy_score(clf.label_, y_pred) == 1.0 def test_regressor(executable): """Test the regression task.""" num_machines = 2 data = create_data(task="regression") partitions = np.array_split(data, num_machines) train_params = { "objective": "regression", "num_machines": num_machines, } reg = DistributedMockup(executable) reg.fit(partitions, train_params) y_pred = reg.predict(predict_config={}) np.testing.assert_allclose(y_pred, reg.label_, rtol=0.2, atol=50.0)