# 🎼🧬 `lightmotif` [![Star me](https://img.shields.io/github/stars/althonos/lightmotif.svg?style=social&label=Star&maxAge=3600)](https://github.com/althonos/lightmotif/stargazers) *A lightweight [platform-accelerated](https://en.wikipedia.org/wiki/Single_instruction,_multiple_data) library for [biological motif](https://en.wikipedia.org/wiki/Sequence_motif) scanning using [position weight matrices](https://en.wikipedia.org/wiki/Position_weight_matrix)*. [![Actions](https://img.shields.io/github/actions/workflow/status/althonos/lightmotif/python.yml?branch=main&logo=github&style=flat-square&maxAge=300)](https://github.com/althonos/lightmotif/actions) [![Coverage](https://img.shields.io/codecov/c/gh/althonos/lightmotif?logo=codecov&style=flat-square&maxAge=3600)](https://codecov.io/gh/althonos/lightmotif/) [![License](https://img.shields.io/badge/license-MIT-blue.svg?style=flat-square&maxAge=2678400)](https://choosealicense.com/licenses/mit/) [![Docs](https://img.shields.io/readthedocs/lightmotif/stable?style=flat-square&maxAge=600)](https://lightmotif.readthedocs.io/en/stable/) [![Crate](https://img.shields.io/crates/v/lightmotif-py.svg?maxAge=600&style=flat-square)](https://crates.io/crates/lightmotif-py) [![PyPI](https://img.shields.io/pypi/v/lightmotif.svg?style=flat-square&maxAge=600)](https://pypi.org/project/lightmotif) [![Wheel](https://img.shields.io/pypi/wheel/lightmotif.svg?style=flat-square&maxAge=2678400)](https://pypi.org/project/lightmotif/#files) [![Bioconda](https://img.shields.io/conda/vn/bioconda/lightmotif?style=flat-square&maxAge=3600)](https://anaconda.org/bioconda/lightmotif) [![Python Versions](https://img.shields.io/pypi/pyversions/lightmotif.svg?style=flat-square&maxAge=600)](https://pypi.org/project/lightmotif/#files) [![Python Implementations](https://img.shields.io/pypi/implementation/lightmotif.svg?style=flat-square&maxAge=600)](https://pypi.org/project/lightmotif/#files) [![Source](https://img.shields.io/badge/source-GitHub-303030.svg?maxAge=2678400&style=flat-square)](https://github.com/althonos/lightmotif/tree/main/lightmotif-py) [![Mirror](https://img.shields.io/badge/mirror-EMBL-009f4d?style=flat-square&maxAge=2678400)](https://git.embl.de/larralde/lightmotif/) [![GitHub issues](https://img.shields.io/github/issues/althonos/lightmotif.svg?style=flat-square&maxAge=600)](https://github.com/althonos/lightmotif/issues) [![Changelog](https://img.shields.io/badge/keep%20a-changelog-8A0707.svg?maxAge=2678400&style=flat-square)](https://github.com/althonos/lightmotif/blob/master/CHANGELOG.md) [![Downloads](https://img.shields.io/pypi/dm/lightmotif?style=flat-square&color=303f9f&maxAge=86400&label=downloads)](https://pepy.tech/project/lightmotif) ## 🗺️ Overview [Motif](https://en.wikipedia.org/wiki/Sequence_motif) scanning with [position weight matrices](https://en.wikipedia.org/wiki/Position_weight_matrix) (also known as position-specific scoring matrices) is a robust method for identifying motifs of fixed length inside a [biological sequence](https://en.wikipedia.org/wiki/Sequence_(biology)). They can be used to identify [transcription factor](https://en.wikipedia.org/wiki/Transcription_factor) [binding sites in DNA](https://en.wikipedia.org/wiki/DNA_binding_site), or [protease](https://en.wikipedia.org/wiki/Protease) [cleavage](https://en.wikipedia.org/wiki/Proteolysis) site in [polypeptides](https://en.wikipedia.org/wiki/Proteolysis). Position weight matrices are often viewed as [sequence logos](https://en.wikipedia.org/wiki/Sequence_logo): [![MX000274.svg](https://raw.githubusercontent.com/althonos/lightmotif/main/docs/_static/prodoric_logo_mx000274.svg)](https://www.prodoric.de/matrix/MX000274.html) The `lightmotif` library provides a Python module to run very efficient searches for a motif encoded in a position weight matrix. The position scanning combines several techniques to allow high-throughput processing of sequences: - Compile-time definition of alphabets and matrix dimensions. - Sequence symbol encoding for fast table look-ups, as implemented in HMMER[\[1\]](#ref1) or MEME[\[2\]](#ref2) - Striped sequence matrices to process several positions in parallel, inspired by Michael Farrar[\[3\]](#ref3). - Vectorized matrix row look-up using `permute` instructions of [AVX2](https://fr.wikipedia.org/wiki/Advanced_Vector_Extensions). *This is the Python version, there is a [Rust crate](https://crates.io/crates/lightmotif) available as well.* ## 🔧 Installing `lightmotif` can be installed directly from [PyPI](https://pypi.org/project/lightmotif/), which hosts some pre-built wheels for most mainstream platforms, as well as the code required to compile from source with Rust: ```console $ pip install lightmotif ``` In the event you have to compile the package from source, all the required Rust libraries are vendored in the source distribution, and a Rust compiler will be setup automatically if there is none on the host machine. ## 💡 Example The motif interface should be mostly compatible with the [`Bio.motifs`](https://biopython-tutorial.readthedocs.io/en/latest/notebooks/14%20-%20Sequence%20motif%20analysis%20using%20Bio.motifs.html#) module from [Biopython](https://biopython.org/). The notable difference is that the `calculate` method of PSSM objects expects a *striped* sequence instead. ```python import lightmotif # Create a count matrix from an iterable of sequences motif = lightmotif.create(["GTTGACCTTATCAAC", "GTTGATCCAGTCAAC"]) # Create a PSSM with 0.1 pseudocounts and uniform background frequencies pwm = motif.counts.normalize(0.1) pssm = pwm.log_odds() # Encode the target sequence into a striped matrix seq = "ATGTCCCAACAACGATACCCCGAGCCCATCGCCGTCATCGGCTCGGCATGCAGATTCCCAGGCG" striped = lightmotif.stripe(seq) # Compute scores using the fastest backend implementation for the host machine scores = pssm.calculate(sseq) ``` ## ⏱️ Benchmarks Benchmarks use the [MX000001](https://www.prodoric.de/matrix/MX000001.html) motif from [PRODORIC](https://www.prodoric.de/)[\[4\]](#ref4), and the [complete genome](https://www.ncbi.nlm.nih.gov/nuccore/U00096) of an *Escherichia coli K12* strain. *Benchmarks were run on a [i7-10710U CPU](https://ark.intel.com/content/www/us/en/ark/products/196448/intel-core-i7-10710u-processor-12m-cache-up-to-4-70-ghz.html) running @1.10GHz, compiled with `--target-cpu=native`*. ```console lightmotif (avx2): 5,479,884 ns/iter (+/- 3,370,523) = 807.8 MiB/s Bio.motifs: 334,359,765 ns/iter (+/- 11,045,456) = 13.2 MiB/s MOODS.scan: 182,710,624 ns/iter (+/- 9,459,257) = 24.2 MiB/s pymemesuite.fimo: 239,694,118 ns/iter (+/- 7,444,620) = 18.5 MiB/s ``` ## 💭 Feedback ### ⚠️ Issue Tracker Found a bug ? Have an enhancement request ? Head over to the [GitHub issue tracker](https://github.com/althonos/lightmotif/issues) if you need to report or ask something. If you are filing in on a bug, please include as much information as you can about the issue, and try to recreate the same bug in a simple, easily reproducible situation. ## 📋 Changelog This project adheres to [Semantic Versioning](http://semver.org/spec/v2.0.0.html) and provides a [changelog](https://github.com/althonos/lightmotif/blob/master/CHANGELOG.md) in the [Keep a Changelog](http://keepachangelog.com/en/1.0.0/) format. ## ⚖️ License This library is provided under the [GNU General Public License 3.0 or later](https://choosealicense.com/licenses/gpl-3.0/), as it contains the GPL-licensed code of the TFM-PVALUE algorithm. The TFM-PVALUE dependency can be disabled by disabling the `pvalue` crate feature, in which case the code can be used and redistributed under the terms of the [MIT license](https://choosealicense.com/licenses/mit/). *This project was developed by [Martin Larralde](https://github.com/althonos/) during his PhD project at the [European Molecular Biology Laboratory](https://www.embl.de/) in the [Zeller team](https://github.com/zellerlab).* ## 📚 References - \[1\] Eddy, Sean R. ‘Accelerated Profile HMM Searches’. PLOS Computational Biology 7, no. 10 (20 October 2011): e1002195. [doi:10.1371/journal.pcbi.1002195](https://doi.org/10.1371/journal.pcbi.1002195). - \[2\] Grant, Charles E., Timothy L. Bailey, and William Stafford Noble. ‘FIMO: Scanning for Occurrences of a given Motif’. Bioinformatics 27, no. 7 (1 April 2011): 1017–18. [doi:10.1093/bioinformatics/btr064](https://doi.org/10.1093/bioinformatics/btr064). - \[3\] Farrar, Michael. ‘Striped Smith–Waterman Speeds Database Searches Six Times over Other SIMD Implementations’. Bioinformatics 23, no. 2 (15 January 2007): 156–61. [doi:10.1093/bioinformatics/btl582](https://doi.org/10.1093/bioinformatics/btl582). - \[4\] Dudek, Christian-Alexander, and Dieter Jahn. ‘PRODORIC: State-of-the-Art Database of Prokaryotic Gene Regulation’. Nucleic Acids Research 50, no. D1 (7 January 2022): D295–302. [doi:10.1093/nar/gkab1110](https://doi.org/10.1093/nar/gkab1110).