use linalg_rs::{smd, SparseMatrix, SparseMatrixData}; use std::collections::HashMap; use criterion::{black_box, criterion_group, criterion_main, Criterion}; // Benchmark for matrix multiplication fn nn_sparse_matmul_bench(c: &mut Criterion) { let indexes: SparseMatrixData = smd![ ((0, 1), 2.0), ((1, 9), 4.0), ((1, 8), 6.0), ((9, 9), 8.0), ((6, 2), 8.0), ((2, 2), 8.0), ((1, 3), 8.0), ((8, 6), 8.0), ((9, 1), 8.0), ((2, 3), 8.0), ((7, 9), 8.0), ((7, 8), 8.0), ((3, 8), 8.0), ((0, 9), 8.0) ]; let x = black_box(SparseMatrix::::new(indexes, (100, 100))); let indexes2: SparseMatrixData = smd![ ((0, 0), 2.0), ((1, 0), 4.0), ((1, 1), 8.0), ((2, 1), 6.0), ((8, 1), 3.0), ((2, 5), 1.0), ((8, 1), 12.0), ((9, 8), 4.0), ((8, 2), 2.0), ((2, 4), 6.0), ((3, 9), 1.0), ((7, 0), 6.0), ((7, 0), 8.0), ((9, 7), 6.0) ]; let y = black_box(SparseMatrix::::new(indexes2, (100, 100))); c.bench_function("NxN @ NxN sparse matmul", |b| { b.iter(|| x.matmul_sparse(&y).unwrap()) }); } criterion_group!(benches, nn_sparse_matmul_bench); criterion_main!(benches);