# Linear-Regression-ML Linear regression algorithm that predicts future values depending on existing data
``` use linear_regression::{linear_regression, predict} fn main() { /* Some data */ let data: Vec<(f32, f32)> = vec![ (17.9, 2013.0), (17.63, 2014.0), (14.95, 2015.0), (15.14, 2016.0), (16.24, 2017.0), (17.6, 2018.0), (17.47, 2019.0), (15.84, 2020.0), (18.7, 2021.0) ]; for price in &data { println!("Year: {}, GDP = ${:.3}B", price.1, price.0); } // Linear regression prints the equation and returns k and b let eq = linear_regression(&data); // Test cases for different x values predict(&eq, 2022.0); } ``` Example: - Vertices data: [  (0.0, 2.1),  (1.0, 1.92),  (2.0, 1.84),  (3.0, 1.71),  (4.0, 1.64) ] - Regression line: **y = -0.113x + 2.068** ----------------------------------------- - Predicted value for 5.000 is 1.503 - Predicted value for 6.000 is 1.390 - Predicted value for 7.000 is 1.277 - Predicted value for 8.000 is 1.164 - Predicted value for 9.000 is 1.051