در هندسه، دایره یک منحنی مسطح و بسته و شامل نقاطی از صفحه است که فاصله‌شان از نقطهٔ ثابتی واقع در آن صفحه مقداری ثابت باشد. نقطهٔ ثابت، مرکز دایره و مقدار ثابت، اندازهٔ شعاع دایره نامیده می‌شود. همچنین دایره را می‌توان یک بیضی دانست که کانون‌های آن بر همدیگر منطبقند (برون‌مرکزی آن صفر است)؛ ازین‌رو دایره یکی از مقاطع مخروطی است. مقطع مخروطی منحنی‌ای است که در محل تقاطع یک صفحه با یک مخروط پدیدار می‌شود، و هنگامی که صفحه با مقطع مخروط موازی باشد منحنی حاصل دایره خواهد بود. دایره را همچنین می‌توان به عنوان چندضلعی متساوی‌الاضلاعی تعریف کرد که تعداد اضلا آن به بی‌نهایت میل می‌کند. دایره مجموعهٔ نقاط صفحه را به سه گروه تقسیم (اِفراز) می‌کند: داخل دایره (یا قرص)، روی دایره (یا محیط)، و بیرون دایره. نسبت محیط دایره به قطر آن (بیشترین فاصلهٔ بین دو نقطه روی محیط) همیشه ثابت است و عددِ پی {\displaystyle (\pi )}{\displaystyle (\pi )} نامیده می‌شود. محاسبهٔ عدد پی سابقه‌ای طولانی در تاریخ بشر دارد. ارشمیدس روشی با استفاده از چهارضلعی‌های محاطی و محیطی برای محاسبهٔ عدد پی ابداع کرد. آپولونیوس و غیاث‌الدین جمشید کاشانی هم عدد پی را با دقتی بالا محاسبه کردند. همچنین مساحت دایره برابر است با حاصلضربِ مربعِ شعاع دایره در عدد پی. دایره حداکثر مساحت ممکن برای مقدار معین محیط و حداقل محیط ممکن برای مقدار معین مساحت را دارد. فلاسفهٔ یونان باستان (به پیروی از فیثاغوری‌ها و افلاطون) معمولاً مدل زمین‌مرکزی را با مدلی مبنی بر کروی بودن زمین در می‌آمیختند و بر این باور بودند که زمین کره‌ای است در مرکز جهان و افلاک در دایره‌هایی به دور زمین در گردشند. بطلمیوس با ابداع دایره‌هایی به عنوان فلک تدویر و فلک حامل نظامی ارائه داد که ساختار هستی را بر اساس دایره توجیه کند. کوپرنیک هم با ارائهٔ نظریهٔ خورشیدمرکزی‌اش ساختار جهان را متشکل از دایره‌هایی به گرد خورشید دانست. در نهایت کپلر اعلام کرد که مسیر گردش سیارات به شکل بیضی و نه دایره است و نیوتن شرایطی را مشخص کرد که تحت آن مسیر حرکت دایره‌ای به یکی دیگر از مقاطع مخروطی بدل می‌شود. دایره کامل‌ترین شکل هندسی دانسته می‌شود و در فناوری، هنر، دین، و فرهنگ اهمیتی عمده داشته‌است. پرگار (که ابزاری برای کشیدن دایره بر اساس تعریف آن با مرکز و شعاع [تعریف اقلیدسی] است) و خط‌کش، تنها ابزار مجاز در هندسه اقلیدسی‌اند، تا جایی که هندسهٔ اقلیدسی گاه «هندسهٔ خط‌کش و پرگار» خوانده شده‌است. تربیع دایره، تثلیث زاویه، و تضعیف مکعب سه مسئلهٔ دشوار و مهمی بودند که در طول تاریخ هندسه‌دانان را درگیر خود کردند. در قرن نوزدهم پیر ونزل و فردیناند فون لیندمن ثابت کردند که این مسائل غیرممکنند. تاریخچهٔ مطالعهٔ دایره به پیش از آغاز تاریخ بازمی‌گردد؛ چنان‌که اختراع چرخ در هزارهٔ چهارم پیش از میلاد در میانرودان نشان از کشف ویژگی‌های بنیادی دایره دارد.[۱] در مصر نیز احمس، نویسندهٔ پاپیروس ریاضی ریند، قانونی برای محاسبهٔ مساحت دایره به دست می‌دهد که با {\displaystyle \pi ={\tfrac {256}{81}}\approx 3.16}{\displaystyle \pi ={\tfrac {256}{81}}\approx 3.16} مطابق است.[۲] در کتیبه‌ای بابلی متعلق به ۱۹۰۰-۱۶۰۰ پ.م. هم رابطهٔ بین مساحت و پیرامون دایره بررسی و عدد پی به‌شکلی ضمنی {\displaystyle \pi ={\tfrac {25}{8}}=3.125}{\displaystyle \pi ={\tfrac {25}{8}}=3.125} تعریف شده‌است.[۳] نخستین قضایای مربوط به دایره دو قضیه از چهار قضیهٔ منسوب به تالس (ح. ۶۵۰ پ.م) هستند. او ثابت کرد که قطر دایره آن را به دو کمان مساوی تقسیم می‌کند و زاویهٔ محاطی‌ای که دایره را در دو سرِ یک قطرش قطع کند قائمه است.[۴] فیثاغوری‌ها باور داشتند که زمین کره‌ای است در مرکز هستی و ماه و خورشید و سیاره‌ها در دایره‌هایی هم‌مرکز روی یک صفحهٔ چرخ‌مانند به‌دور زمین در گردشند.[۵] این نظریهٔ زمین‌مرکزی، باور غالب یونانیان باستان بود. بااین‌همه آریستارخوس ساموسی‌ (ح. ۳۱۰ — ح. ۲۳۰ پ.م) نظریهٔ خورشیدمرکزی را مطرح کرد که در آن خورشید ثابت است و زمین در دایره‌ای به مرکزیت خورشید در حرکت.[۶] همچنین فیلسوف یونانی افلاطون (۴۲۸/۴۲۷ — ۳۴۸/۳۴۷ پ.م) باور داشت که زمین کره‌ای بی‌نقص است و همهٔ حرکت‌های سماواتی در دایره‌هایی کامل و با سرعت یکسان به گرد آن صورت می‌گیرد.[۷] این باور افلاطون به اصلی جزم‌اندیشانه در آکادمی افلاطون و بعدها در میان ستاره‌شناسان یونان باستان بدل شد.[۸] یکی از مسائل هندسی که یونانیان به‌شدت با آن درگیر بودند مسئلهٔ یافتن مربعی با مساحت مساوی دایره (اصطلاحاً تربیع دایره) بود. آناکساگوراس (ح. ۴۵۰ پ.م) نخستین ریاضی‌دان شناخته‌شده‌ای است که این مسئله را مطالعه کرده‌است.[۹] بقراط خیوسی (۴۷۰ — ۴۱۰ پ.م) در تلاش برای حل تربیع دایره توانست ثابت کند که مساحت هلال کوچکتر ایجاد شده از برخورد دو دایره، برابر با مساحت مثلث قائم‌الزاویهٔ متساوی‌الساقینی است که وترش برابر وتر دایرهٔ کوچکتر و اضلاعش برابر شعاع دایرهٔ بزرگتر است. هلال بقراط نخستین منحنی‌ای بود که مساحت دقیق آن از طریق ریاضی محاسبه شد.[۱۰] آریستوفان (ح. ۴۴۶ – ۳۸۶ پ.م) در نمایشنامهٔ پرنده‌ها «تربیع‌کنندگان دایره‌ها» را به سخره می‌گیرد.[۱۱] دیگر مسائل بزرگی که ریاضی‌دانان یونانی را درگیر خود کرده بود تثلیث زاویه (تقسیم زاویه به سه قسمت مساوی) و تضعیف مکعب (دو برابر کردن حجم مکعب) با استفاده از پرگار و خط‌کش بود. کتاب سوم اصول اقلیدس (ح. ۳۶۵ — ۲۷۵ پ.م) نیز تماماً به ویژگی‌های دایره و مسائل مربوط به محیط و محاط کردن آن نسبت به چندضلعی‌ها اختصاص دارد.[۱۲] همچنین سومین اصل از اصول موضوعه اقلیدس بیان می‌دارد که «برای هر پاره خط دلخواه می‌توان دایره‌ای به شعاع آن پاره خط و به مرکز یک سر آن رسم کرد.» ارشمیدس (۲۸۷ — ۲۱۲ پ.م) هم در اندازه‌های دایره برای اولین بار فرمول مساحت دایره را اثبات کرد[۱۳] و با چندضلعی‌های منتظم محیطی و محاطی ۹۶‌ضلعی، عدد پی {\displaystyle (\pi )}{\displaystyle (\pi )} را به صورت {\displaystyle {\tfrac {223}{71}}<\pi <{\tfrac {22}{7}}}{\displaystyle {\tfrac {223}{71}}<\pi <{\tfrac {22}{7}}} (یعنی ۳٫۱۴۰۸ < {\displaystyle \pi }\pi < ۳٫۱۴۲۹) تعریف و محاسبه کرد؛ ازین‌رو عدد پی در برخی منابع «عدد ارشمیدس» نامیده شده‌است. آپولونیوس (ح. ۲۴۰ پ.م) به‌شکل ضمنی نشان داد که معادلهٔ دوقطبی {\displaystyle r=kr'}{\displaystyle r=kr'} با تغییر {\displaystyle k}k نظامی از دایره‌های هم‌محور را می‌سازد.[۱۴] او همچنین در اثر مهمش با عنوان مخروطات،[الف] دایره را به عنوان حالت خاص بیضی و یکی از مقاطع مخروطی مطالعه، خط مماس بر منحنی (که بعدها موضوع اصلی حساب دیفرانسیل شد) را تعریف، و عدد پی را با دقتی بیشتر از ارشمیدس محاسبه کرد.[۱۵] او همچنین مسئله‌های آپولونیوس را مطرح و حل کرد و تعریفی متفاوت از دایره (به عنوان مکان هندسی نقاطی که نسبت فواصلشان از دو نقطه ثابت است) ارائه کرد. بطلمیوس (ح. ۱۰۰ — ۱۶۸ میلادی) با ترکیب آرای ستاره‌شناسان پیشین در المجسطی، نظام زمین‌مرکزی‌اش را به‌گونه‌ای تعریف می‌کند که تمام ساختار هستی بر اساس شکل دایره توجیه شود.[۱۶] به گفتهٔ بطلمیوس زمین و «افلاک» (به ترتیب ماه، عطارد، زهره، خورشید، مریخ، مشتری، و زحل) کاملا کروی‌اند و زمین در مرکز گیتی ثابت و مستحکم شده‌است. به باور او افلاک با سرعت یکنواخت بر دایره‌ای کوچک به نام فلک تدویر در حرکتند و مرکز هر فلک تدویر با سرعتی یکنواخت بر دایره‌ای بزرگ به نام فلک حامل به مرکزیت زمین حرکت می کند. همهٔ این‌ها در داخل منطقه‌البروج قرار دارند که کره‌ای است ثابت و ستارگان روی آن استقرار یافته‌اند.[۱۷] مدل بطلمیوس از جهان هستی تا زمان کوپرنیک و تیکو براهه فصل‌الخطاب اخترشناسی باقی ماند.[۱۸] در روم باستان، «سولکوس پریمیجنیوس»[ب] آیینی بود مبنی بر این‌که پیش از بنانهادن هر شهر، پیشوایان مذهبی با هدایت خیشی بسته به دو گاو به دور محوطهٔ آن شیاری به شکل دایره رسم می‌کردند و باور بر این بود که این عمل از شهر حفاظت خواهد کرد. در اساطیر رومی نیز رومولوس به دور شهر رم شیاری دایره‌ای می‌کِشد و برادرش رموس را به علت ورود به این دایره می‌کُشد.[۱۹] در امپراتوری اشکانی نیز پایتخت‌ها و شهرهای مهم به شکل دایره ساخته می‌شدند؛ از جملهٔ این شهرها می‌توان از نسا، شهر گور، صددروازه، هترا، و تیسفون پارتی یاد کرد. به گفتهٔ گیرشمن، «طرح این شهرها، عدم امنیت دائمی را که در ایران عهد پارتیان حکفرما بود، عدم ثبات سیاست خارجی و اغتشاشات داخلی را آشکار می‌سازد… طرح عمومی آن‌ها عبارت است از دایره‌ای که از اصول شهرسازی قدیم آسیای غربی اقتباس شده و نیز طرح اردوگاه‌های نظامی قدیم را که در قشون آشوری متداول بوده‌است به خاطر می‌آورد.»[۲۰] همچنین در چین باستان لیو هوی (متولد ح. ۲۲۵ میلادی در کائو وی) با محاط کردن چندضلعی در دایره عدد پی را محاسبه کرد. تسو چونگچی (۴۲۹ — ۵۰۰ میلادی) نیز در رسالهٔ شیوهٔ الحاق[پ] مقدار عدد پی را مستقل از لیو هوی ولی به شیوه‌ای مشابه برابر {\displaystyle \pi \approx {\tfrac {355}{113}}}{\displaystyle \pi \approx {\tfrac {355}{113}}} محاسبه کرد.[۲۱]