#include "llama-sampling.h" #include #include #include #include #include #include static void llama_log_softmax(float * array, size_t size) { float max_l = *std::max_element(array, array + size); float sum = 0.f; for (size_t i = 0; i < size; ++i) { float p = expf(array[i] - max_l); sum += p; array[i] = p; } for (size_t i = 0; i < size; ++i) { array[i] = logf(array[i] / sum); } } void llama_set_rng_seed_impl(struct llama_sampling * smpl, uint32_t seed) { if (seed == LLAMA_DEFAULT_SEED) { seed = time(NULL); } smpl->rng.seed(seed); } void llama_sample_softmax_impl(struct llama_sampling * smpl, llama_token_data_array * candidates) { GGML_ASSERT(candidates->size > 0); const int64_t t_start_sample_us = ggml_time_us(); // Sort the logits in descending order if (!candidates->sorted) { std::sort(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) { return a.logit > b.logit; }); candidates->sorted = true; } float max_l = candidates->data[0].logit; float cum_sum = 0.0f; for (size_t i = 0; i < candidates->size; ++i) { float p = expf(candidates->data[i].logit - max_l); candidates->data[i].p = p; cum_sum += p; } for (size_t i = 0; i < candidates->size; ++i) { candidates->data[i].p /= cum_sum; } if (smpl) { smpl->t_sample_us += ggml_time_us() - t_start_sample_us; } } void llama_sample_top_k_impl(struct llama_sampling * smpl, llama_token_data_array * candidates, int32_t k, size_t min_keep) { // TODO: move bucket sort to separate function so that top_p/tail_free/typical/softmax first is equally fast // if (k >= (int32_t)candidates->size) { // return; // } const int64_t t_start_sample_us = ggml_time_us(); if (k <= 0) { k = candidates->size; } k = std::max(k, (int) min_keep); k = std::min(k, (int) candidates->size); // Sort scores in descending order if (!candidates->sorted) { auto comp = [](const llama_token_data & a, const llama_token_data & b) { return a.logit > b.logit; }; if (k <= 128) { std::partial_sort(candidates->data, candidates->data + k, candidates->data + candidates->size, comp); } else { constexpr int nbuckets = 128; constexpr float bucket_low = -10.0f; constexpr float bucket_high = 10.0f; constexpr float bucket_scale = nbuckets/(bucket_high - bucket_low); constexpr float bucket_inter = -bucket_low * bucket_scale; std::vector bucket_idx(candidates->size); std::vector histo(nbuckets, 0); for (int i = 0; i < (int)candidates->size; ++i) { const float val = candidates->data[i].logit; int ib = int(bucket_scale * val + bucket_inter); //nbuckets * (val - bucket_low) / (bucket_high - bucket_low); ib = std::max(0, std::min(nbuckets-1, ib)); bucket_idx[i] = ib; ++histo[ib]; } int nhave = 0; int ib = nbuckets - 1; for ( ; ib >= 0; --ib) { nhave += histo[ib]; if (nhave >= k) break; } std::vector tmp_tokens(nhave); auto ptr = tmp_tokens.data(); std::vector bucket_ptrs; bucket_ptrs.reserve(nbuckets - ib); for (int j = nbuckets - 1; j >= ib; --j) { bucket_ptrs.push_back(ptr); ptr += histo[j]; } for (int i = 0; i < (int)candidates->size; ++i) { int j = bucket_idx[i]; if (j >= ib) { *bucket_ptrs[nbuckets-1-j]++ = candidates->data[i]; } } ptr = tmp_tokens.data(); int ndone = 0; for (int j = nbuckets-1; j > ib; --j) { std::sort(ptr, ptr + histo[j], comp); ptr += histo[j]; ndone += histo[j]; } std::partial_sort(ptr, ptr + k - ndone, ptr + histo[ib], comp); std::memcpy(candidates->data, tmp_tokens.data(), k*sizeof(llama_token_data)); } candidates->sorted = true; } candidates->size = k; if (smpl) { smpl->t_sample_us += ggml_time_us() - t_start_sample_us; } } void llama_sample_top_p_impl(struct llama_sampling * smpl, llama_token_data_array * candidates, float p, size_t min_keep) { if (p >= 1.0f) { return; } llama_sample_softmax_impl(smpl, candidates); const int64_t t_start_sample_us = ggml_time_us(); // Compute the cumulative probabilities float cum_sum = 0.0f; size_t last_idx = candidates->size; for (size_t i = 0; i < candidates->size; ++i) { cum_sum += candidates->data[i].p; // Check if the running sum is at least p or if we have kept at least min_keep tokens // we set the last index to i+1 to indicate that the current iterate should be included in the set if (cum_sum >= p && i + 1 >= min_keep) { last_idx = i + 1; break; } } // Resize the output vector to keep only the top-p tokens candidates->size = last_idx; if (smpl) { smpl->t_sample_us += ggml_time_us() - t_start_sample_us; } } void llama_sample_min_p_impl(struct llama_sampling * smpl, llama_token_data_array * candidates, float p, size_t min_keep) { if (p <= 0.0f || !candidates->size) { return; } const int64_t t_start_sample_us = ggml_time_us(); bool min_p_applied = false; // if the candidates aren't sorted, try the unsorted implementation first if (!candidates->sorted) { std::vector filtered_tokens; float max_logit = -FLT_MAX; for (size_t i = 0; i < candidates->size; ++i) { max_logit = std::max(max_logit, candidates->data[i].logit); } const float min_logit = max_logit + logf(p); // min logit for p_i >= p * p_max for (size_t i = 0; i < candidates->size; ++i) { if (candidates->data[i].logit >= min_logit) { filtered_tokens.push_back(candidates->data[i]); } } // if we have enough values the operation was a success if (filtered_tokens.size() >= min_keep) { memcpy(candidates->data, filtered_tokens.data(), filtered_tokens.size()*sizeof(llama_token_data)); candidates->size = filtered_tokens.size(); min_p_applied = true; } } // if the candidates are sorted or the unsorted implementation failed, use this implementation if (!min_p_applied) { // Sort the logits in descending order if (!candidates->sorted) { std::sort(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) { return a.logit > b.logit; }); candidates->sorted = true; } const float min_logit = candidates->data[0].logit + logf(p); // min logit for p_i >= p * p_max size_t i = 1; // first token always matches for (; i < candidates->size; ++i) { if (candidates->data[i].logit < min_logit && i >= min_keep) { break; // prob too small } } // Resize the output vector to keep only the matching tokens candidates->size = i; } if (smpl) { smpl->t_sample_us += ggml_time_us() - t_start_sample_us; } } void llama_sample_tail_free_impl(struct llama_sampling * smpl, llama_token_data_array * candidates, float z, size_t min_keep) { if (z >= 1.0f || candidates->size <= 2) { return; } llama_sample_softmax_impl((struct llama_sampling *) nullptr, candidates); const int64_t t_start_sample_us = ggml_time_us(); // Compute the first and second derivatives std::vector first_derivatives(candidates->size - 1); std::vector second_derivatives(candidates->size - 2); for (size_t i = 0; i < first_derivatives.size(); ++i) { first_derivatives[i] = candidates->data[i].p - candidates->data[i + 1].p; } for (size_t i = 0; i < second_derivatives.size(); ++i) { second_derivatives[i] = first_derivatives[i] - first_derivatives[i + 1]; } // Calculate absolute value of second derivatives for (size_t i = 0; i < second_derivatives.size(); ++i) { second_derivatives[i] = std::abs(second_derivatives[i]); } // Normalize the second derivatives { const float second_derivatives_sum = std::accumulate(second_derivatives.begin(), second_derivatives.end(), 0.0f); if (second_derivatives_sum > 1e-6f) { for (float & value : second_derivatives) { value /= second_derivatives_sum; } } else { for (float & value : second_derivatives) { value = 1.0f / second_derivatives.size(); } } } float cum_sum = 0.0f; size_t last_idx = candidates->size; for (size_t i = 0; i < second_derivatives.size(); ++i) { cum_sum += second_derivatives[i]; // Check if the running sum is greater than z or if we have kept at least min_keep tokens if (cum_sum > z && i >= min_keep) { last_idx = i; break; } } // Resize the output vector to keep only the tokens above the tail location candidates->size = last_idx; if (smpl) { smpl->t_sample_us += ggml_time_us() - t_start_sample_us; } } void llama_sample_typical_impl(struct llama_sampling * smpl, llama_token_data_array * candidates, float p, size_t min_keep) { // Reference implementation: // https://github.com/huggingface/transformers/compare/main...cimeister:typical-sampling:typical-pr if (p >= 1.0f) { return; } // Compute the softmax of logits and calculate entropy llama_sample_softmax_impl((struct llama_sampling *) nullptr, candidates); const int64_t t_start_sample_us = ggml_time_us(); float entropy = 0.0f; for (size_t i = 0; i < candidates->size; ++i) { entropy += -candidates->data[i].p * logf(candidates->data[i].p); } // Compute the absolute difference between negative log probability and entropy for each candidate std::vector shifted_scores; for (size_t i = 0; i < candidates->size; ++i) { float shifted_score = fabsf(-logf(candidates->data[i].p) - entropy); shifted_scores.push_back(shifted_score); } // Sort tokens based on the shifted_scores and their corresponding indices std::vector indices(candidates->size); std::iota(indices.begin(), indices.end(), 0); std::sort(indices.begin(), indices.end(), [&](size_t a, size_t b) { return shifted_scores[a] < shifted_scores[b]; }); // Compute the cumulative probabilities float cum_sum = 0.0f; size_t last_idx = indices.size(); for (size_t i = 0; i < indices.size(); ++i) { size_t idx = indices[i]; cum_sum += candidates->data[idx].p; // Check if the running sum is greater than typical or if we have kept at least min_keep tokens if (cum_sum > p && i >= min_keep - 1) { last_idx = i + 1; break; } } // Resize the output vector to keep only the locally typical tokens std::vector new_candidates; for (size_t i = 0; i < last_idx; ++i) { size_t idx = indices[i]; new_candidates.push_back(candidates->data[idx]); } // Replace the data in candidates with the new_candidates data std::copy(new_candidates.begin(), new_candidates.end(), candidates->data); candidates->size = new_candidates.size(); candidates->sorted = false; if (smpl) { smpl->t_sample_us += ggml_time_us() - t_start_sample_us; } } void llama_sample_entropy_impl(struct llama_sampling * smpl, llama_token_data_array * candidates, float min_temp, float max_temp, float exponent_val) { const int64_t t_start_sample_us = ggml_time_us(); // no need to do anything if there is only one (or zero) candidates if(candidates->size <= 1) { return; } // Calculate maximum possible entropy float max_entropy = -logf(1.0f / candidates->size); llama_sample_softmax_impl((struct llama_sampling *) nullptr, candidates); // Calculate entropy of the softmax probabilities float entropy = 0.0f; for (size_t i = 0; i < candidates->size; ++i) { float prob = candidates->data[i].p; if (prob > 0.0f) { // Ensure no log(0) entropy -= prob * logf(prob); } } // Normalize the entropy (max_entropy cannot be 0 here because we checked candidates->size != 1 above) float normalized_entropy = entropy / max_entropy; // Map the normalized entropy to the desired temperature range using the power function float dyn_temp = min_temp + (max_temp - min_temp) * powf(normalized_entropy, exponent_val); #ifdef DEBUG LLAMA_LOG_INFO("Your text maxtemp value is: %f\n", max_temp); LLAMA_LOG_INFO("Entropy: %f\n", entropy); LLAMA_LOG_INFO("Max Possible Entropy: %f\n", max_entropy); LLAMA_LOG_INFO("Normalized Entropy: %f\n", normalized_entropy); LLAMA_LOG_INFO("Exponent: %f\n", exponent_val); LLAMA_LOG_INFO("Dynamic Temperature (dyn_temp): %f\n", dyn_temp); #endif // Apply the dynamically calculated temperature scaling for (size_t i = 0; i < candidates->size; ++i) { candidates->data[i].logit /= dyn_temp; } // Re-compute softmax probabilities after scaling logits with dynamic temperature double max_l_double = candidates->data[0].logit; double cum_sum_double = 0.0; for (size_t i = 0; i < candidates->size; ++i) { double p = exp(candidates->data[i].logit - max_l_double); candidates->data[i].p = p; // Store the scaled probability cum_sum_double += p; } for (size_t i = 0; i < candidates->size; ++i) { candidates->data[i].p /= cum_sum_double; // Re-normalize the probabilities } #ifdef DEBUG // Print the updated top 25 probabilities after temperature scaling LLAMA_LOG_INFO("\nUpdated Top 25 Probabilities After Dynamic Temperature Scaling (in percentages):\n"); for (size_t i = 0; i < 25 && i < candidates->size; ++i) { LLAMA_LOG_INFO("Token %zu: %f%%\n", i + 1, candidates->data[i].p * 100.0f); } #endif if (smpl) { smpl->t_sample_us += ggml_time_us() - t_start_sample_us; } } void llama_sample_temp_impl(struct llama_sampling * smpl, llama_token_data_array * candidates, float temp) { const int64_t t_start_sample_us = ggml_time_us(); for (size_t i = 0; i < candidates->size; ++i) { candidates->data[i].logit /= temp; } if (smpl) { smpl->t_sample_us += ggml_time_us() - t_start_sample_us; } } void llama_sample_repetition_penalties_impl( struct llama_sampling * smpl, llama_token_data_array * candidates, const llama_token * last_tokens, size_t penalty_last_n, float penalty_repeat, float penalty_freq, float penalty_present) { if (penalty_last_n == 0 || (penalty_repeat == 1.0f && penalty_freq == 0.0f && penalty_present == 0.0f)) { return; } const int64_t t_start_sample_us = ggml_time_us(); // Create a frequency map to count occurrences of each token in last_tokens std::unordered_map token_count; for (size_t i = 0; i < penalty_last_n; ++i) { token_count[last_tokens[i]]++; } // Apply frequency and presence penalties to the candidates for (size_t i = 0; i < candidates->size; ++i) { const auto token_iter = token_count.find(candidates->data[i].id); if (token_iter == token_count.end()) { continue; } const int count = token_iter->second; // The academic publication that described this technique actually just only divided, but that would cause tokens with negative logits to become more likely, which is obviously wrong. // This is common fix for this problem, which is to multiply by the penalty instead of dividing. if (candidates->data[i].logit <= 0) { candidates->data[i].logit *= penalty_repeat; } else { candidates->data[i].logit /= penalty_repeat; } candidates->data[i].logit -= float(count) * penalty_freq + float(count > 0) * penalty_present; } candidates->sorted = false; if (smpl) { smpl->t_sample_us += ggml_time_us() - t_start_sample_us; } } void llama_sample_apply_guidance_impl( struct llama_sampling * smpl, float * logits, float * logits_guidance, float scale) { GGML_ASSERT(smpl); const auto t_start_sample_us = ggml_time_us(); const auto n_vocab = smpl->n_vocab; llama_log_softmax(logits, n_vocab); llama_log_softmax(logits_guidance, n_vocab); for (int i = 0; i < n_vocab; ++i) { auto & l = logits[i]; const auto & g = logits_guidance[i]; l = scale * (l - g) + g; } smpl->t_sample_us += ggml_time_us() - t_start_sample_us; } llama_token llama_sample_token_mirostat_impl(struct llama_sampling * smpl, llama_token_data_array * candidates, float tau, float eta, int32_t m, float * mu) { GGML_ASSERT(smpl); const int32_t n_vocab = float(smpl->n_vocab); int64_t t_start_sample_us = ggml_time_us(); llama_sample_softmax_impl((struct llama_sampling *) nullptr, candidates); // Estimate s_hat using the most probable m tokens float s_hat = 0.0; float sum_ti_bi = 0.0; float sum_ti_sq = 0.0; for (size_t i = 0; i < size_t(m - 1) && i < candidates->size - 1; ++i) { float t_i = logf(float(i + 2) / float(i + 1)); float b_i = logf(candidates->data[i].p / candidates->data[i + 1].p); sum_ti_bi += t_i * b_i; sum_ti_sq += t_i * t_i; } s_hat = sum_ti_bi / sum_ti_sq; // Compute k from the estimated s_hat and target surprise value float epsilon_hat = s_hat - 1; float k = powf((epsilon_hat * powf(2, *mu)) / (1 - powf(n_vocab, -epsilon_hat)), 1 / s_hat); // Sample the next word X using top-k sampling llama_sample_top_k_impl((struct llama_sampling *) nullptr, candidates, int(k), 1); smpl->t_sample_us += ggml_time_us() - t_start_sample_us; llama_token X = llama_sample_token_impl(smpl, candidates); t_start_sample_us = ggml_time_us(); // Compute error as the difference between observed surprise and target surprise value size_t X_idx = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) { return candidate.id == X; })); float observed_surprise = -log2f(candidates->data[X_idx].p); float e = observed_surprise - tau; // Update mu using the learning rate and error *mu = *mu - eta * e; smpl->t_sample_us += ggml_time_us() - t_start_sample_us; return X; } llama_token llama_sample_token_mirostat_v2_impl(struct llama_sampling * smpl, llama_token_data_array * candidates, float tau, float eta, float * mu) { int64_t t_start_sample_us; t_start_sample_us = ggml_time_us(); llama_sample_softmax_impl(smpl, candidates); // Truncate the words with surprise values greater than mu candidates->size = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) { return -log2f(candidate.p) > *mu; })); if (candidates->size == 0) { candidates->size = 1; } if (smpl) { smpl->t_sample_us += ggml_time_us() - t_start_sample_us; } // Normalize the probabilities of the remaining words llama_sample_softmax_impl(smpl, candidates); // Sample the next word X from the remaining words llama_token X = llama_sample_token_impl(smpl, candidates); t_start_sample_us = ggml_time_us(); // Compute error as the difference between observed surprise and target surprise value size_t X_idx = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) { return candidate.id == X; })); float observed_surprise = -log2f(candidates->data[X_idx].p); float e = observed_surprise - tau; // Update mu using the learning rate and error *mu = *mu - eta * e; if (smpl) { smpl->t_sample_us += ggml_time_us() - t_start_sample_us; } return X; } llama_token llama_sample_token_greedy_impl(struct llama_sampling * smpl, llama_token_data_array * candidates) { const int64_t t_start_sample_us = ggml_time_us(); // Find max element auto * max_iter = std::max_element(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) { return a.logit < b.logit; }); llama_token result = max_iter->id; if (smpl) { smpl->t_sample_us += ggml_time_us() - t_start_sample_us; smpl->n_sample++; } return result; } llama_token llama_sample_token_with_rng_impl(struct llama_sampling * smpl, llama_token_data_array * candidates, std::mt19937 & rng) { GGML_ASSERT(smpl); const int64_t t_start_sample_us = ggml_time_us(); llama_sample_softmax_impl((struct llama_sampling *) nullptr, candidates); std::vector probs; probs.reserve(candidates->size); for (size_t i = 0; i < candidates->size; ++i) { probs.push_back(candidates->data[i].p); } std::discrete_distribution<> dist(probs.begin(), probs.end()); int idx = dist(rng); llama_token result = candidates->data[idx].id; smpl->t_sample_us += ggml_time_us() - t_start_sample_us; smpl->n_sample++; return result; } llama_token llama_sample_token_impl(struct llama_sampling * smpl, llama_token_data_array * candidates) { return llama_sample_token_with_rng_impl(smpl, candidates, smpl->rng); }