//! [compile-pass] Check `schedule` code generation #![deny(unsafe_code)] #![deny(warnings)] #![no_main] #![no_std] use panic_halt as _; use rtic::cyccnt::{Instant, U32Ext as _}; #[rtic::app(device = lm3s6965, monotonic = rtic::cyccnt::CYCCNT)] const APP: () = { #[init(schedule = [foo, bar, baz])] fn init(c: init::Context) { let _: Result<(), ()> = c.schedule.foo(c.start + 10.cycles()); let _: Result<(), u32> = c.schedule.bar(c.start + 20.cycles(), 0); let _: Result<(), (u32, u32)> = c.schedule.baz(c.start + 30.cycles(), 0, 1); } #[idle(schedule = [foo, bar, baz])] fn idle(c: idle::Context) -> ! { let _: Result<(), ()> = c.schedule.foo(Instant::now() + 40.cycles()); let _: Result<(), u32> = c.schedule.bar(Instant::now() + 50.cycles(), 0); let _: Result<(), (u32, u32)> = c.schedule.baz(Instant::now() + 60.cycles(), 0, 1); loop {} } #[task(binds = SVCall, schedule = [foo, bar, baz])] fn svcall(c: svcall::Context) { let _: Result<(), ()> = c.schedule.foo(c.start + 70.cycles()); let _: Result<(), u32> = c.schedule.bar(c.start + 80.cycles(), 0); let _: Result<(), (u32, u32)> = c.schedule.baz(c.start + 90.cycles(), 0, 1); } #[task(binds = UART0, schedule = [foo, bar, baz])] fn uart0(c: uart0::Context) { let _: Result<(), ()> = c.schedule.foo(c.start + 100.cycles()); let _: Result<(), u32> = c.schedule.bar(c.start + 110.cycles(), 0); let _: Result<(), (u32, u32)> = c.schedule.baz(c.start + 120.cycles(), 0, 1); } #[task(schedule = [foo, bar, baz])] fn foo(c: foo::Context) { let _: Result<(), ()> = c.schedule.foo(c.scheduled + 130.cycles()); let _: Result<(), u32> = c.schedule.bar(c.scheduled + 140.cycles(), 0); let _: Result<(), (u32, u32)> = c.schedule.baz(c.scheduled + 150.cycles(), 0, 1); } #[task] fn bar(_: bar::Context, _x: u32) {} #[task] fn baz(_: baz::Context, _x: u32, _y: u32) {} // RTIC requires that unused interrupts are declared in an extern block when // using software tasks; these free interrupts will be used to dispatch the // software tasks. extern "C" { fn SSI0(); } };