%! TEX root = ../../../facharbeit.tex % LTeX: language=de-DE \begin{figure}[tbhp] \begin{tikzpicture} \node at (0,0) [rectangle,draw] (a) {Detektor}; \node at (4,0) [rectangle,draw] (b) {Detektor}; \node at (8,0) [rectangle,draw] (c) {Detektor}; \def\offset{0.5} \def\lineWidth{0.8} \def\laserDualLine{0.05} \def\laserLineWidth{0.6} % a \node [below] at ($(a) - (0,0.4)$) {$a$}; \draw[line width=\lineWidth pt] ($(a) + (\offset,\offset)$) -- ($(a) + (-\offset,\offset)$) node [left] {Rayleigh-Sperrfilter}; \draw[line width=\lineWidth pt] ($(a) + (\offset,\offset * 4)$) node [below right, align=left] {Dichroitischer\\ Spiegel} -- ($(a) + (-\offset,\offset * 2)$); \node at ($(a) + (-\offset * 3, \offset * 3)$) [rectangle, draw] (aLaser) {Laser}; \node at ($(a) + (0, \offset * 9)$) [circle,draw] (aSample) {Probe}; \node at ($(a) + (0, \offset * 6)$) [ellipse, draw, label=left:Linse, minimum width=1cm] (aLens) {}; \coordinate (aLaserHit) at ($(a) + (0, \offset * 3)$); \draw[red, ->, line width=\laserLineWidth] (aLaser) -- ($(aLaserHit) - (\laserDualLine,0)$); \draw[red, ->, line width=\laserLineWidth] ($(aLaserHit) - (\laserDualLine,0)$) -- ($(aSample) - (\laserDualLine,0.58)$); \draw[green,<-, line width=\laserLineWidth] (a) -- (aSample); % b \node [below] at ($(b) - (0,0.4)$) {$b$}; \coordinate (bFirst) at ($(b) + (\offset,\offset*2)$); \coordinate (bSecond) at ($(b) + (\offset,\offset)$) ; \draw[line width=\lineWidth pt] ($(b) + (-\offset,\offset*2)$) -- (bFirst); \draw[line width=\lineWidth pt] ($(b) + (-\offset,\offset)$) -- (bSecond); \node[right, align=left] at ($(bFirst)!0.5!(bSecond)$) (bRayleighThing) {Rayleigh-\\Sperrfilter}; \node at ($(b) + (0, \offset * 9)$) [circle,draw] (bSample) {Probe}; \node at ($(b) + (-0.3, \offset * 16)$) [rectangle, draw, rotate=90, anchor=north] (bLaser) {Laser}; \node at ($(b) + (0, \offset * 6)$) [ellipse, draw, label=left:Linse, minimum width=1cm] (bLens1) {}; \node at ($(b) + (0, \offset * 12)$) [ellipse, draw, label=left:Linse, minimum width=1cm] (bLens2) {}; \draw[red,->, line width=\laserLineWidth] (bLaser) -- ($(b) + (0, \offset * 2)$); \draw[green, ->, line width=\laserLineWidth] ($(bSample) - (\laserDualLine, 0.60)$) -- ($(b) - (\laserDualLine, -0.2)$); % c \node [below] at ($(c) - (0,0.4)$) {$c$}; \node at ($(c) + (0, \offset * 9)$) [circle,draw] (cSample) {Probe}; \node at ($(c) + (0, \offset * 6)$) [ellipse, draw, label=left:Linse, minimum width=1cm] (cLens) {}; \node at ($(c) + (\offset * 2, \offset * 9)$) [ellipse, draw, rotate=90, anchor=north, label=right:Linse, minimum width=1cm] (cLens) {}; \node at ($(c) + (\offset * 5, \offset * 9)$) [rectangle, draw] (cLaser) {Laser}; \draw[red, ->, line width=\laserLineWidth] (cLaser) -- ($(cSample) + (0.68,0)$); \draw[green,->, line width=\laserLineWidth] (cSample) -- (c); \end{tikzpicture} \caption{ Vergleich der drei verschiedenen Raman Spektroskop Geometrien: Eine ($a$) zurückstreuende, ($b$) durchquerende oder ($c$) rechtwinklige Geometrie. Die roten Strahlen symbolisieren das direkt von dem Laser ausgesandte und Rayleigh gestreute Licht, die Grünen das von der Probe Raman gestreute Licht. Die Abbildung ist Abbildung 1 aus \cite{cellPhoneRamanSpec} nachempfunden. }\label{fig:DetektorPositioning} \end{figure}