/* Copyright 2003-2018 Joaquin M Lopez Munoz. * Distributed under the Boost Software License, Version 1.0. * (See accompanying file LICENSE_1_0.txt or copy at * http://www.boost.org/LICENSE_1_0.txt) * * See http://www.boost.org/libs/multi_index for library home page. */ #ifndef BOOST_MULTI_INDEX_DETAIL_COPY_MAP_HPP #define BOOST_MULTI_INDEX_DETAIL_COPY_MAP_HPP #if defined(_MSC_VER) #pragma once #endif #include /* keep it first to prevent nasty warns in MSVC */ #include #include #include #include #include #include #include #include #include namespace lslboost{ namespace multi_index{ namespace detail{ /* copy_map is used as an auxiliary structure during copy_() operations. * When a container with n nodes is replicated, node_map holds the pairings * between original and copied nodes, and provides a fast way to find a * copied node from an original one. * The semantics of the class are not simple, and no attempt has been made * to enforce it: multi_index_container handles it right. On the other hand, * the const interface, which is the one provided to index implementations, * only allows for: * - Enumeration of pairs of (original,copied) nodes (excluding the headers), * - fast retrieval of copied nodes (including the headers.) */ template struct copy_map_entry { copy_map_entry(Node* f,Node* s):first(f),second(s){} Node* first; Node* second; bool operator<(const copy_map_entry& x)const { return std::less()(first,x.first); } }; template class copy_map:private noncopyable { public: typedef const copy_map_entry* const_iterator; copy_map( const Allocator& al,std::size_t size,Node* header_org,Node* header_cpy): al_(al),size_(size),spc(al_,size_),n(0), header_org_(header_org),header_cpy_(header_cpy),released(false) {} ~copy_map() { if(!released){ for(std::size_t i=0;isecond->value())); deallocate((spc.data()+i)->second); } } } const_iterator begin()const{return raw_ptr(spc.data());} const_iterator end()const{return raw_ptr(spc.data()+n);} void clone(Node* node) { (spc.data()+n)->first=node; (spc.data()+n)->second=raw_ptr(allocate()); BOOST_TRY{ lslboost::detail::allocator::construct( lslboost::addressof((spc.data()+n)->second->value()),node->value()); } BOOST_CATCH(...){ deallocate((spc.data()+n)->second); BOOST_RETHROW; } BOOST_CATCH_END ++n; if(n==size_){ std::sort( raw_ptr*>(spc.data()), raw_ptr*>(spc.data())+size_); } } Node* find(Node* node)const { if(node==header_org_)return header_cpy_; return std::lower_bound( begin(),end(),copy_map_entry(node,0))->second; } void release() { released=true; } private: typedef typename lslboost::detail::allocator::rebind_to< Allocator,Node >::type allocator_type; #ifdef BOOST_NO_CXX11_ALLOCATOR typedef typename allocator_type::pointer allocator_pointer; #else typedef std::allocator_traits allocator_traits; typedef typename allocator_traits::pointer allocator_pointer; #endif allocator_type al_; std::size_t size_; auto_space,Allocator> spc; std::size_t n; Node* header_org_; Node* header_cpy_; bool released; allocator_pointer allocate() { #ifdef BOOST_NO_CXX11_ALLOCATOR return al_.allocate(1); #else return allocator_traits::allocate(al_,1); #endif } void deallocate(Node* node) { #ifdef BOOST_NO_CXX11_ALLOCATOR al_.deallocate(static_cast(node),1); #else allocator_traits::deallocate(al_,static_cast(node),1); #endif } }; } /* namespace multi_index::detail */ } /* namespace multi_index */ } /* namespace lslboost */ #endif