/* boost random/detail/polynomial.hpp header file * * Copyright Steven Watanabe 2014 * Distributed under the Boost Software License, Version 1.0. (See * accompanying file LICENSE_1_0.txt or copy at * http://www.boost.org/LICENSE_1_0.txt) * * See http://www.boost.org for most recent version including documentation. * * $Id$ */ #ifndef BOOST_RANDOM_DETAIL_POLYNOMIAL_HPP #define BOOST_RANDOM_DETAIL_POLYNOMIAL_HPP #include #include #include #include #include #include namespace lslboost { namespace random { namespace detail { class polynomial_ops { public: typedef unsigned long digit_t; static void add(std::size_t size, const digit_t * lhs, const digit_t * rhs, digit_t * output) { for(std::size_t i = 0; i < size; ++i) { output[i] = lhs[i] ^ rhs[i]; } } static void add_shifted_inplace(std::size_t size, const digit_t * lhs, digit_t * output, std::size_t shift) { if(shift == 0) { add(size, lhs, output, output); return; } std::size_t bits = std::numeric_limits::digits; digit_t prev = 0; for(std::size_t i = 0; i < size; ++i) { digit_t tmp = lhs[i]; output[i] ^= (tmp << shift) | (prev >> (bits-shift)); prev = tmp; } output[size] ^= (prev >> (bits-shift)); } static void multiply_simple(std::size_t size, const digit_t * lhs, const digit_t * rhs, digit_t * output) { std::size_t bits = std::numeric_limits::digits; for(std::size_t i = 0; i < 2*size; ++i) { output[i] = 0; } for(std::size_t i = 0; i < size; ++i) { for(std::size_t j = 0; j < bits; ++j) { if((lhs[i] & (digit_t(1) << j)) != 0) { add_shifted_inplace(size, rhs, output + i, j); } } } } // memory requirements: (size - cutoff) * 4 + next_smaller static void multiply_karatsuba(std::size_t size, const digit_t * lhs, const digit_t * rhs, digit_t * output) { if(size < 64) { multiply_simple(size, lhs, rhs, output); return; } // split in half std::size_t cutoff = size/2; multiply_karatsuba(cutoff, lhs, rhs, output); multiply_karatsuba(size - cutoff, lhs + cutoff, rhs + cutoff, output + cutoff*2); std::vector local1(size - cutoff); std::vector local2(size - cutoff); // combine the digits for the inner multiply add(cutoff, lhs, lhs + cutoff, &local1[0]); if(size & 1) local1[cutoff] = lhs[size - 1]; add(cutoff, rhs + cutoff, rhs, &local2[0]); if(size & 1) local2[cutoff] = rhs[size - 1]; std::vector local3((size - cutoff) * 2); multiply_karatsuba(size - cutoff, &local1[0], &local2[0], &local3[0]); add(cutoff * 2, output, &local3[0], &local3[0]); add((size - cutoff) * 2, output + cutoff*2, &local3[0], &local3[0]); // Finally, add the inner result add((size - cutoff) * 2, output + cutoff, &local3[0], output + cutoff); } static void multiply_add_karatsuba(std::size_t size, const digit_t * lhs, const digit_t * rhs, digit_t * output) { std::vector buf(size * 2); multiply_karatsuba(size, lhs, rhs, &buf[0]); add(size * 2, &buf[0], output, output); } static void multiply(const digit_t * lhs, std::size_t lhs_size, const digit_t * rhs, std::size_t rhs_size, digit_t * output) { std::fill_n(output, lhs_size + rhs_size, digit_t(0)); multiply_add(lhs, lhs_size, rhs, rhs_size, output); } static void multiply_add(const digit_t * lhs, std::size_t lhs_size, const digit_t * rhs, std::size_t rhs_size, digit_t * output) { // split into pieces that can be passed to // karatsuba multiply. while(lhs_size != 0) { if(lhs_size < rhs_size) { std::swap(lhs, rhs); std::swap(lhs_size, rhs_size); } multiply_add_karatsuba(rhs_size, lhs, rhs, output); lhs += rhs_size; lhs_size -= rhs_size; output += rhs_size; } } static void copy_bits(const digit_t * x, std::size_t low, std::size_t high, digit_t * out) { const std::size_t bits = std::numeric_limits::digits; std::size_t offset = low/bits; x += offset; low -= offset*bits; high -= offset*bits; std::size_t n = (high-low)/bits; if(low == 0) { for(std::size_t i = 0; i < n; ++i) { out[i] = x[i]; } } else { for(std::size_t i = 0; i < n; ++i) { out[i] = (x[i] >> low) | (x[i+1] << (bits-low)); } } if((high-low)%bits) { digit_t low_mask = (digit_t(1) << ((high-low)%bits)) - 1; digit_t result = (x[n] >> low); if(low != 0 && (n+1)*bits < high) { result |= (x[n+1] << (bits-low)); } out[n] = (result & low_mask); } } static void shift_left(digit_t * val, std::size_t size, std::size_t shift) { const std::size_t bits = std::numeric_limits::digits; BOOST_ASSERT(shift > 0); BOOST_ASSERT(shift < bits); digit_t prev = 0; for(std::size_t i = 0; i < size; ++i) { digit_t tmp = val[i]; val[i] = (prev >> (bits - shift)) | (val[i] << shift); prev = tmp; } } static digit_t sqr(digit_t val) { const std::size_t bits = std::numeric_limits::digits; digit_t mask = (digit_t(1) << bits/2) - 1; for(std::size_t i = bits; i > 1; i /= 2) { val = ((val & ~mask) << i/2) | (val & mask); mask = mask & (mask >> i/4); mask = mask | (mask << i/2); } return val; } static void sqr(digit_t * val, std::size_t size) { const std::size_t bits = std::numeric_limits::digits; digit_t mask = (digit_t(1) << bits/2) - 1; for(std::size_t i = 0; i < size; ++i) { digit_t x = val[size - i - 1]; val[(size - i - 1) * 2] = sqr(x & mask); val[(size - i - 1) * 2 + 1] = sqr(x >> bits/2); } } // optimized for the case when the modulus has few bits set. struct sparse_mod { sparse_mod(const digit_t * divisor, std::size_t divisor_bits) { const std::size_t bits = std::numeric_limits::digits; _remainder_bits = divisor_bits - 1; for(std::size_t i = 0; i < divisor_bits; ++i) { if(divisor[i/bits] & (digit_t(1) << i%bits)) { _bit_indices.push_back(i); } } BOOST_ASSERT(_bit_indices.back() == divisor_bits - 1); _bit_indices.pop_back(); if(_bit_indices.empty()) { _block_bits = divisor_bits; _lower_bits = 0; } else { _block_bits = divisor_bits - _bit_indices.back() - 1; _lower_bits = _bit_indices.back() + 1; } _partial_quotient.resize((_block_bits + bits - 1)/bits); } void operator()(digit_t * dividend, std::size_t dividend_bits) { const std::size_t bits = std::numeric_limits::digits; while(dividend_bits > _remainder_bits) { std::size_t block_start = (std::max)(dividend_bits - _block_bits, _remainder_bits); std::size_t block_size = (dividend_bits - block_start + bits - 1) / bits; copy_bits(dividend, block_start, dividend_bits, &_partial_quotient[0]); for(std::size_t i = 0; i < _bit_indices.size(); ++i) { std::size_t pos = _bit_indices[i] + block_start - _remainder_bits; add_shifted_inplace(block_size, &_partial_quotient[0], dividend + pos/bits, pos%bits); } add_shifted_inplace(block_size, &_partial_quotient[0], dividend + block_start/bits, block_start%bits); dividend_bits = block_start; } } std::vector _partial_quotient; std::size_t _remainder_bits; std::size_t _block_bits; std::size_t _lower_bits; std::vector _bit_indices; }; // base should have the same number of bits as mod // base, and mod should both be able to hold a power // of 2 >= mod_bits. out needs to be twice as large. static void mod_pow_x(lslboost::uintmax_t exponent, const digit_t * mod, std::size_t mod_bits, digit_t * out) { const std::size_t bits = std::numeric_limits::digits; const std::size_t n = (mod_bits + bits - 1) / bits; const std::size_t highbit = mod_bits - 1; if(exponent == 0) { out[0] = 1; std::fill_n(out + 1, n - 1, digit_t(0)); return; } lslboost::uintmax_t i = std::numeric_limits::digits - 1; while(((lslboost::uintmax_t(1) << i) & exponent) == 0) { --i; } out[0] = 2; std::fill_n(out + 1, n - 1, digit_t(0)); sparse_mod m(mod, mod_bits); while(i--) { sqr(out, n); m(out, 2 * mod_bits - 1); if((lslboost::uintmax_t(1) << i) & exponent) { shift_left(out, n, 1); if(out[highbit / bits] & (digit_t(1) << highbit%bits)) add(n, out, mod, out); } } } }; class polynomial { typedef polynomial_ops::digit_t digit_t; public: polynomial() : _size(0) {} class reference { public: reference(digit_t &value, int idx) : _value(value), _idx(idx) {} operator bool() const { return (_value & (digit_t(1) << _idx)) != 0; } reference& operator=(bool b) { if(b) { _value |= (digit_t(1) << _idx); } else { _value &= ~(digit_t(1) << _idx); } return *this; } reference &operator^=(bool b) { _value ^= (digit_t(b) << _idx); return *this; } reference &operator=(const reference &other) { return *this = static_cast(other); } private: digit_t &_value; int _idx; }; reference operator[](std::size_t i) { static const std::size_t bits = std::numeric_limits::digits; ensure_bit(i); return reference(_storage[i/bits], i%bits); } bool operator[](std::size_t i) const { static const std::size_t bits = std::numeric_limits::digits; if(i < size()) return (_storage[i/bits] & (digit_t(1) << (i%bits))) != 0; else return false; } std::size_t size() const { return _size; } void resize(std::size_t n) { static const std::size_t bits = std::numeric_limits::digits; _storage.resize((n + bits - 1)/bits); // clear the high order bits in case we're shrinking. if(n%bits) { _storage.back() &= ((digit_t(1) << (n%bits)) - 1); } _size = n; } friend polynomial operator*(const polynomial &lhs, const polynomial &rhs); friend polynomial mod_pow_x(lslboost::uintmax_t exponent, polynomial mod); private: std::vector _storage; std::size_t _size; void ensure_bit(std::size_t i) { if(i >= size()) { resize(i + 1); } } void normalize() { while(size() && (*this)[size() - 1] == 0) resize(size() - 1); } }; inline polynomial operator*(const polynomial &lhs, const polynomial &rhs) { polynomial result; result._storage.resize(lhs._storage.size() + rhs._storage.size()); polynomial_ops::multiply(&lhs._storage[0], lhs._storage.size(), &rhs._storage[0], rhs._storage.size(), &result._storage[0]); result._size = lhs._size + rhs._size; return result; } inline polynomial mod_pow_x(lslboost::uintmax_t exponent, polynomial mod) { polynomial result; mod.normalize(); std::size_t mod_size = mod.size(); result._storage.resize(mod._storage.size() * 2); result._size = mod.size() * 2; polynomial_ops::mod_pow_x(exponent, &mod._storage[0], mod_size, &result._storage[0]); result.resize(mod.size() - 1); return result; } } } } #endif // BOOST_RANDOM_DETAIL_POLYNOMIAL_HPP