# `LTR-303ALS` [![Build status](https://github.com/Ardelean-Calin/ltr303-rs/actions/workflows/main.yml/badge.svg)](https://github.com/Ardelean-Calin/ltr303-rs/actions/workflows/main.yml) [![Crates.io Version][crates-io-badge]][crates-io] [![Crates.io Downloads][crates-io-download-badge]][crates-io-download] ![No Std][no-std-badge] This is a platform-agnostic Rust driver for the [`LTR-303 Ambient Light Sensor`](https://optoelectronics.liteon.com/en-global/Led/LED-Component/Detail/926/0/0/16/200) using [`embedded-hal`](https://github.com/rust-embedded/embedded-hal) traits. ## Supported devices Tested with the following sensor(s): - [LTR-303ALS-01](https://www.mouser.com/datasheet/2/239/Lite-On_LTR-303ALS-01_DS_ver%201.1-1175269.pdf) ## Status - [x] Starting a measurement with configurable *gain*, *integration time* and *measurement rate*. See: `start_measurement()` - [x] Polling for new data. See: `data_ready()` - [x] Checking latest measurement status. See: `get_status()` - [x] Reading the latest illuminance value in **lux**. See: `get_lux_data()` - [x] Putting the sensor in standby. See: `standby()` - [x] Reading part ID and manufacturer ID. See: `get_part_id()` and `get_mfc_id()` - [ ] Option to pass a delay function to the driver. Similar to the [opt300x driver](https://github.com/eldruin/opt300x-rs). - [ ] Sensor reset in case of error. - [ ] Wait for sensor start-up before triggering measurement after cold startup (100ms) - [ ] Interrupts. ## Examples On Linux using i2cdev: ```rust use linux_embedded_hal::I2cdev; use ltr303::{LTR303, LTR303Config}; fn main() { let dev = I2cdev::new("/dev/i2c-1").unwrap(); let mut sensor = LTR303::init(dev); let config = LTR303Config::default(); sensor.start_measurement(&config).unwrap(); loop { while sensor.data_ready().unwrap() != true { // Wait for measurement ready } let lux_val = sensor.get_lux_data().unwrap(); println!("LTR303 current lux phys: {}", lux_val.lux_phys); } } ``` --- On an ESP32-based development board: ```rust use embedded_hal::prelude::*; use esp_idf_sys as _; use esp_idf_hal::{delay::FreeRtos, i2c}; use esp_idf_hal::peripherals::Peripherals; use ltr303::{LTR303, LTR303Config}; fn main() { esp_idf_sys::link_patches(); let _peripherals = Peripherals::take().unwrap(); // The i2c pins let sda = _peripherals.pins.gpio4.into_input_output().unwrap(); let scl = _peripherals.pins.gpio6.into_output().unwrap(); let _cfg = i2c::config::MasterConfig::new().baudrate(10000.into()); let _i2c = i2c::Master::new(_peripherals.i2c0, i2c::MasterPins { sda, scl }, _cfg).unwrap(); let mut ltr303 = LTR303::init(_i2c); let ltr303_config = LTR303Config::default().with_integration_time(ltr303::IntegrationTime::Ms400); ltr303.start_measurement(<r303_config).unwrap(); loop { while ltr303.data_ready().unwrap() != true { // Wait for measurement ready } let lux_val = ltr303.get_lux_data().unwrap(); println!("LTR303 current lux phys: {}", lux_val.lux_phys); FreeRtos.delay_ms(3000_u32); } } ``` ## Development For easy development, a `flake.nix` is provided. Make sure you have [Nix](https://nixos.org/) installed, as well as the flake command enabled (for example by adding `experimental-features = nix-command flakes` to `~/.config/nix/nix.conf`) and then simply run ``` nix develop ``` inside the project folder to have a complete build and development environment with all required dependencies for `ltr303-rs`. [crates-io]: https://crates.io/crates/ltr303 [crates-io-badge]: https://img.shields.io/crates/v/ltr303.svg?maxAge=3600 [crates-io-download]: https://crates.io/crates/ltr303 [crates-io-download-badge]: https://img.shields.io/crates/d/ltr303.svg?maxAge=3600 [no-std-badge]: https://img.shields.io/badge/no__std-yes-blue