// Copyright 2018 Ulf Adams // // The contents of this file may be used under the terms of the Apache License, // Version 2.0. // // (See accompanying file LICENSE-Apache or copy at // http://www.apache.org/licenses/LICENSE-2.0) // // Alternatively, the contents of this file may be used under the terms of // the Boost Software License, Version 1.0. // (See accompanying file LICENSE-Boost or copy at // https://www.boost.org/LICENSE_1_0.txt) // // Unless required by applicable law or agreed to in writing, this software // is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, either express or implied. #ifndef RYU_D2S_INTRINSICS_H #define RYU_D2S_INTRINSICS_H #include #include // Defines RYU_32_BIT_PLATFORM if applicable. #include "ryu/common.h" // ABSL avoids uint128_t on Win32 even if __SIZEOF_INT128__ is defined. // Let's do the same for now. #if defined(__SIZEOF_INT128__) && !defined(_MSC_VER) && !defined(RYU_ONLY_64_BIT_OPS) #define HAS_UINT128 #elif defined(_MSC_VER) && !defined(RYU_ONLY_64_BIT_OPS) && defined(_M_X64) #define HAS_64_BIT_INTRINSICS #endif #if defined(HAS_UINT128) typedef __uint128_t uint128_t; #endif #if defined(HAS_64_BIT_INTRINSICS) #include static inline uint64_t umul128(const uint64_t a, const uint64_t b, uint64_t* const productHi) { return _umul128(a, b, productHi); } static inline uint64_t shiftright128(const uint64_t lo, const uint64_t hi, const uint32_t dist) { // For the __shiftright128 intrinsic, the shift value is always // modulo 64. // In the current implementation of the double-precision version // of Ryu, the shift value is always < 64. (In the case // RYU_OPTIMIZE_SIZE == 0, the shift value is in the range [49, 58]. // Otherwise in the range [2, 59].) // Check this here in case a future change requires larger shift // values. In this case this function needs to be adjusted. assert(dist < 64); return __shiftright128(lo, hi, (unsigned char) dist); } #else // defined(HAS_64_BIT_INTRINSICS) static inline uint64_t umul128(const uint64_t a, const uint64_t b, uint64_t* const productHi) { // The casts here help MSVC to avoid calls to the __allmul library function. const uint32_t aLo = (uint32_t)a; const uint32_t aHi = (uint32_t)(a >> 32); const uint32_t bLo = (uint32_t)b; const uint32_t bHi = (uint32_t)(b >> 32); const uint64_t b00 = (uint64_t)aLo * bLo; const uint64_t b01 = (uint64_t)aLo * bHi; const uint64_t b10 = (uint64_t)aHi * bLo; const uint64_t b11 = (uint64_t)aHi * bHi; const uint32_t b00Lo = (uint32_t)b00; const uint32_t b00Hi = (uint32_t)(b00 >> 32); const uint64_t mid1 = b10 + b00Hi; const uint32_t mid1Lo = (uint32_t)(mid1); const uint32_t mid1Hi = (uint32_t)(mid1 >> 32); const uint64_t mid2 = b01 + mid1Lo; const uint32_t mid2Lo = (uint32_t)(mid2); const uint32_t mid2Hi = (uint32_t)(mid2 >> 32); const uint64_t pHi = b11 + mid1Hi + mid2Hi; const uint64_t pLo = ((uint64_t)mid2Lo << 32) | b00Lo; *productHi = pHi; return pLo; } static inline uint64_t shiftright128(const uint64_t lo, const uint64_t hi, const uint32_t dist) { // We don't need to handle the case dist >= 64 here (see above). assert(dist < 64); #if defined(RYU_OPTIMIZE_SIZE) || !defined(RYU_32_BIT_PLATFORM) assert(dist > 0); return (hi << (64 - dist)) | (lo >> dist); #else // Avoid a 64-bit shift by taking advantage of the range of shift values. assert(dist >= 32); return (hi << (64 - dist)) | ((uint32_t)(lo >> 32) >> (dist - 32)); #endif } #endif // defined(HAS_64_BIT_INTRINSICS) #if defined(RYU_32_BIT_PLATFORM) // Returns the high 64 bits of the 128-bit product of a and b. static inline uint64_t umulh(const uint64_t a, const uint64_t b) { // Reuse the umul128 implementation. // Optimizers will likely eliminate the instructions used to compute the // low part of the product. uint64_t hi; umul128(a, b, &hi); return hi; } // On 32-bit platforms, compilers typically generate calls to library // functions for 64-bit divisions, even if the divisor is a constant. // // E.g.: // https://bugs.llvm.org/show_bug.cgi?id=37932 // https://gcc.gnu.org/bugzilla/show_bug.cgi?id=17958 // https://gcc.gnu.org/bugzilla/show_bug.cgi?id=37443 // // The functions here perform division-by-constant using multiplications // in the same way as 64-bit compilers would do. // // NB: // The multipliers and shift values are the ones generated by clang x64 // for expressions like x/5, x/10, etc. static inline uint64_t div5(const uint64_t x) { return umulh(x, 0xCCCCCCCCCCCCCCCDu) >> 2; } static inline uint64_t div10(const uint64_t x) { return umulh(x, 0xCCCCCCCCCCCCCCCDu) >> 3; } static inline uint64_t div100(const uint64_t x) { return umulh(x >> 2, 0x28F5C28F5C28F5C3u) >> 2; } static inline uint64_t div1e8(const uint64_t x) { return umulh(x, 0xABCC77118461CEFDu) >> 26; } static inline uint64_t div1e9(const uint64_t x) { return umulh(x >> 9, 0x44B82FA09B5A53u) >> 11; } static inline uint32_t mod1e9(const uint64_t x) { // Avoid 64-bit math as much as possible. // Returning (uint32_t) (x - 1000000000 * div1e9(x)) would // perform 32x64-bit multiplication and 64-bit subtraction. // x and 1000000000 * div1e9(x) are guaranteed to differ by // less than 10^9, so their highest 32 bits must be identical, // so we can truncate both sides to uint32_t before subtracting. // We can also simplify (uint32_t) (1000000000 * div1e9(x)). // We can truncate before multiplying instead of after, as multiplying // the highest 32 bits of div1e9(x) can't affect the lowest 32 bits. return ((uint32_t) x) - 1000000000 * ((uint32_t) div1e9(x)); } #else // defined(RYU_32_BIT_PLATFORM) static inline uint64_t div5(const uint64_t x) { return x / 5; } static inline uint64_t div10(const uint64_t x) { return x / 10; } static inline uint64_t div100(const uint64_t x) { return x / 100; } static inline uint64_t div1e8(const uint64_t x) { return x / 100000000; } static inline uint64_t div1e9(const uint64_t x) { return x / 1000000000; } static inline uint32_t mod1e9(const uint64_t x) { return (uint32_t) (x - 1000000000 * div1e9(x)); } #endif // defined(RYU_32_BIT_PLATFORM) static inline uint32_t pow5Factor(uint64_t value) { uint32_t count = 0; for (;;) { assert(value != 0); const uint64_t q = div5(value); const uint32_t r = ((uint32_t) value) - 5 * ((uint32_t) q); if (r != 0) { break; } value = q; ++count; } return count; } // Returns true if value is divisible by 5^p. static inline bool multipleOfPowerOf5(const uint64_t value, const uint32_t p) { // I tried a case distinction on p, but there was no performance difference. return pow5Factor(value) >= p; } // Returns true if value is divisible by 2^p. static inline bool multipleOfPowerOf2(const uint64_t value, const uint32_t p) { assert(value != 0); // return __builtin_ctzll(value) >= p; return (value & ((1ull << p) - 1)) == 0; } #endif // RYU_D2S_INTRINSICS_H