/* * LZ4 auto-framing library * Copyright (C) 2011-2016, Yann Collet. * * BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php) * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: * * - Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following disclaimer * in the documentation and/or other materials provided with the * distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * You can contact the author at : * - LZ4 homepage : http://www.lz4.org * - LZ4 source repository : https://github.com/lz4/lz4 */ /* LZ4F is a stand-alone API to create LZ4-compressed Frames * in full conformance with specification v1.6.1 . * This library rely upon memory management capabilities (malloc, free) * provided either by , * or redirected towards another library of user's choice * (see Memory Routines below). */ /*-************************************ * Compiler Options **************************************/ #include #ifdef _MSC_VER /* Visual Studio */ # pragma warning(disable : 4127) /* disable: C4127: conditional expression is constant */ #endif /*-************************************ * Tuning parameters **************************************/ /* * LZ4F_HEAPMODE : * Control how LZ4F_compressFrame allocates the Compression State, * either on stack (0:default, fastest), or in memory heap (1:requires malloc()). */ #ifndef LZ4F_HEAPMODE # define LZ4F_HEAPMODE 0 #endif /*-************************************ * Library declarations **************************************/ #define LZ4F_STATIC_LINKING_ONLY #include "lz4frame.h" #define LZ4_STATIC_LINKING_ONLY #include "lz4.h" #define LZ4_HC_STATIC_LINKING_ONLY #include "lz4hc.h" #define XXH_STATIC_LINKING_ONLY #include "xxhash.h" /*-************************************ * Memory routines **************************************/ /* * User may redirect invocations of * malloc(), calloc() and free() * towards another library or solution of their choice * by modifying below section. **/ #include /* memset, memcpy, memmove */ #ifndef LZ4_SRC_INCLUDED /* avoid redefinition when sources are coalesced */ # define MEM_INIT(p,v,s) memset((p),(v),(s)) #endif #ifndef LZ4_SRC_INCLUDED /* avoid redefinition when sources are coalesced */ # include /* malloc, calloc, free */ # define ALLOC(s) malloc(s) # define ALLOC_AND_ZERO(s) calloc(1,(s)) # define FREEMEM(p) free(p) #endif static void* LZ4F_calloc(size_t s, LZ4F_CustomMem cmem) { /* custom calloc defined : use it */ if (cmem.customCalloc != NULL) { return cmem.customCalloc(cmem.opaqueState, s); } /* nothing defined : use default 's calloc() */ if (cmem.customAlloc == NULL) { return ALLOC_AND_ZERO(s); } /* only custom alloc defined : use it, and combine it with memset() */ { void* const p = cmem.customAlloc(cmem.opaqueState, s); if (p != NULL) MEM_INIT(p, 0, s); return p; } } static void* LZ4F_malloc(size_t s, LZ4F_CustomMem cmem) { /* custom malloc defined : use it */ if (cmem.customAlloc != NULL) { return cmem.customAlloc(cmem.opaqueState, s); } /* nothing defined : use default 's malloc() */ return ALLOC(s); } static void LZ4F_free(void* p, LZ4F_CustomMem cmem) { if (p == NULL) return; if (cmem.customFree != NULL) { /* custom allocation defined : use it */ cmem.customFree(cmem.opaqueState, p); return; } /* nothing defined : use default 's free() */ FREEMEM(p); } /*-************************************ * Debug **************************************/ #if defined(LZ4_DEBUG) && (LZ4_DEBUG>=1) # include #else # ifndef assert # define assert(condition) ((void)0) # endif #endif #define LZ4F_STATIC_ASSERT(c) { enum { LZ4F_static_assert = 1/(int)(!!(c)) }; } /* use only *after* variable declarations */ #if defined(LZ4_DEBUG) && (LZ4_DEBUG>=2) && !defined(DEBUGLOG) # include static int g_debuglog_enable = 1; # define DEBUGLOG(l, ...) { \ if ((g_debuglog_enable) && (l<=LZ4_DEBUG)) { \ fprintf(stderr, __FILE__ " (%i): ", __LINE__ ); \ fprintf(stderr, __VA_ARGS__); \ fprintf(stderr, " \n"); \ } } #else # define DEBUGLOG(l, ...) {} /* disabled */ #endif /*-************************************ * Basic Types **************************************/ #if !defined (__VMS) && (defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) ) # include typedef uint8_t BYTE; typedef uint16_t U16; typedef uint32_t U32; typedef int32_t S32; typedef uint64_t U64; #else typedef unsigned char BYTE; typedef unsigned short U16; typedef unsigned int U32; typedef signed int S32; typedef unsigned long long U64; #endif /* unoptimized version; solves endianness & alignment issues */ static U32 LZ4F_readLE32 (const void* src) { const BYTE* const srcPtr = (const BYTE*)src; U32 value32 = srcPtr[0]; value32 |= ((U32)srcPtr[1])<< 8; value32 |= ((U32)srcPtr[2])<<16; value32 |= ((U32)srcPtr[3])<<24; return value32; } static void LZ4F_writeLE32 (void* dst, U32 value32) { BYTE* const dstPtr = (BYTE*)dst; dstPtr[0] = (BYTE)value32; dstPtr[1] = (BYTE)(value32 >> 8); dstPtr[2] = (BYTE)(value32 >> 16); dstPtr[3] = (BYTE)(value32 >> 24); } static U64 LZ4F_readLE64 (const void* src) { const BYTE* const srcPtr = (const BYTE*)src; U64 value64 = srcPtr[0]; value64 |= ((U64)srcPtr[1]<<8); value64 |= ((U64)srcPtr[2]<<16); value64 |= ((U64)srcPtr[3]<<24); value64 |= ((U64)srcPtr[4]<<32); value64 |= ((U64)srcPtr[5]<<40); value64 |= ((U64)srcPtr[6]<<48); value64 |= ((U64)srcPtr[7]<<56); return value64; } static void LZ4F_writeLE64 (void* dst, U64 value64) { BYTE* const dstPtr = (BYTE*)dst; dstPtr[0] = (BYTE)value64; dstPtr[1] = (BYTE)(value64 >> 8); dstPtr[2] = (BYTE)(value64 >> 16); dstPtr[3] = (BYTE)(value64 >> 24); dstPtr[4] = (BYTE)(value64 >> 32); dstPtr[5] = (BYTE)(value64 >> 40); dstPtr[6] = (BYTE)(value64 >> 48); dstPtr[7] = (BYTE)(value64 >> 56); } /*-************************************ * Constants **************************************/ #ifndef LZ4_SRC_INCLUDED /* avoid double definition */ # define KB *(1<<10) # define MB *(1<<20) # define GB *(1<<30) #endif #define _1BIT 0x01 #define _2BITS 0x03 #define _3BITS 0x07 #define _4BITS 0x0F #define _8BITS 0xFF #define LZ4F_BLOCKUNCOMPRESSED_FLAG 0x80000000U #define LZ4F_BLOCKSIZEID_DEFAULT LZ4F_max64KB static const size_t minFHSize = LZ4F_HEADER_SIZE_MIN; /* 7 */ static const size_t maxFHSize = LZ4F_HEADER_SIZE_MAX; /* 19 */ static const size_t BHSize = LZ4F_BLOCK_HEADER_SIZE; /* block header : size, and compress flag */ static const size_t BFSize = LZ4F_BLOCK_CHECKSUM_SIZE; /* block footer : checksum (optional) */ /*-************************************ * Structures and local types **************************************/ typedef enum { LZ4B_COMPRESSED, LZ4B_UNCOMPRESSED} LZ4F_BlockCompressMode_e; typedef enum { ctxNone, ctxFast, ctxHC } LZ4F_CtxType_e; typedef struct LZ4F_cctx_s { LZ4F_CustomMem cmem; LZ4F_preferences_t prefs; U32 version; U32 cStage; /* 0 : compression uninitialized ; 1 : initialized, can compress */ const LZ4F_CDict* cdict; size_t maxBlockSize; size_t maxBufferSize; BYTE* tmpBuff; /* internal buffer, for streaming */ BYTE* tmpIn; /* starting position of data compress within internal buffer (>= tmpBuff) */ size_t tmpInSize; /* amount of data to compress after tmpIn */ U64 totalInSize; XXH32_state_t xxh; void* lz4CtxPtr; U16 lz4CtxAlloc; /* sized for: 0 = none, 1 = lz4 ctx, 2 = lz4hc ctx */ U16 lz4CtxType; /* in use as: 0 = none, 1 = lz4 ctx, 2 = lz4hc ctx */ LZ4F_BlockCompressMode_e blockCompressMode; } LZ4F_cctx_t; /*-************************************ * Error management **************************************/ #define LZ4F_GENERATE_STRING(STRING) #STRING, static const char* LZ4F_errorStrings[] = { LZ4F_LIST_ERRORS(LZ4F_GENERATE_STRING) }; unsigned LZ4F_isError(LZ4F_errorCode_t code) { return (code > (LZ4F_errorCode_t)(-LZ4F_ERROR_maxCode)); } const char* LZ4F_getErrorName(LZ4F_errorCode_t code) { static const char* codeError = "Unspecified error code"; if (LZ4F_isError(code)) return LZ4F_errorStrings[-(int)(code)]; return codeError; } LZ4F_errorCodes LZ4F_getErrorCode(size_t functionResult) { if (!LZ4F_isError(functionResult)) return LZ4F_OK_NoError; return (LZ4F_errorCodes)(-(ptrdiff_t)functionResult); } static LZ4F_errorCode_t LZ4F_returnErrorCode(LZ4F_errorCodes code) { /* A compilation error here means sizeof(ptrdiff_t) is not large enough */ LZ4F_STATIC_ASSERT(sizeof(ptrdiff_t) >= sizeof(size_t)); return (LZ4F_errorCode_t)-(ptrdiff_t)code; } #define RETURN_ERROR(e) return LZ4F_returnErrorCode(LZ4F_ERROR_ ## e) #define RETURN_ERROR_IF(c,e) do { \ if (c) { \ DEBUGLOG(3, "Error: " #c); \ RETURN_ERROR(e); \ } \ } while (0) #define FORWARD_IF_ERROR(r) do { if (LZ4F_isError(r)) return (r); } while (0) unsigned LZ4F_getVersion(void) { return LZ4F_VERSION; } int LZ4F_compressionLevel_max(void) { return LZ4HC_CLEVEL_MAX; } size_t LZ4F_getBlockSize(LZ4F_blockSizeID_t blockSizeID) { static const size_t blockSizes[4] = { 64 KB, 256 KB, 1 MB, 4 MB }; if (blockSizeID == 0) blockSizeID = LZ4F_BLOCKSIZEID_DEFAULT; if (blockSizeID < LZ4F_max64KB || blockSizeID > LZ4F_max4MB) RETURN_ERROR(maxBlockSize_invalid); { int const blockSizeIdx = (int)blockSizeID - (int)LZ4F_max64KB; return blockSizes[blockSizeIdx]; } } /*-************************************ * Private functions **************************************/ #define MIN(a,b) ( (a) < (b) ? (a) : (b) ) static BYTE LZ4F_headerChecksum (const void* header, size_t length) { U32 const xxh = XXH32(header, length, 0); return (BYTE)(xxh >> 8); } /*-************************************ * Simple-pass compression functions **************************************/ static LZ4F_blockSizeID_t LZ4F_optimalBSID(const LZ4F_blockSizeID_t requestedBSID, const size_t srcSize) { LZ4F_blockSizeID_t proposedBSID = LZ4F_max64KB; size_t maxBlockSize = 64 KB; while (requestedBSID > proposedBSID) { if (srcSize <= maxBlockSize) return proposedBSID; proposedBSID = (LZ4F_blockSizeID_t)((int)proposedBSID + 1); maxBlockSize <<= 2; } return requestedBSID; } /*! LZ4F_compressBound_internal() : * Provides dstCapacity given a srcSize to guarantee operation success in worst case situations. * prefsPtr is optional : if NULL is provided, preferences will be set to cover worst case scenario. * @return is always the same for a srcSize and prefsPtr, so it can be relied upon to size reusable buffers. * When srcSize==0, LZ4F_compressBound() provides an upper bound for LZ4F_flush() and LZ4F_compressEnd() operations. */ static size_t LZ4F_compressBound_internal(size_t srcSize, const LZ4F_preferences_t* preferencesPtr, size_t alreadyBuffered) { LZ4F_preferences_t prefsNull = LZ4F_INIT_PREFERENCES; prefsNull.frameInfo.contentChecksumFlag = LZ4F_contentChecksumEnabled; /* worst case */ prefsNull.frameInfo.blockChecksumFlag = LZ4F_blockChecksumEnabled; /* worst case */ { const LZ4F_preferences_t* const prefsPtr = (preferencesPtr==NULL) ? &prefsNull : preferencesPtr; U32 const flush = prefsPtr->autoFlush | (srcSize==0); LZ4F_blockSizeID_t const blockID = prefsPtr->frameInfo.blockSizeID; size_t const blockSize = LZ4F_getBlockSize(blockID); size_t const maxBuffered = blockSize - 1; size_t const bufferedSize = MIN(alreadyBuffered, maxBuffered); size_t const maxSrcSize = srcSize + bufferedSize; unsigned const nbFullBlocks = (unsigned)(maxSrcSize / blockSize); size_t const partialBlockSize = maxSrcSize & (blockSize-1); size_t const lastBlockSize = flush ? partialBlockSize : 0; unsigned const nbBlocks = nbFullBlocks + (lastBlockSize>0); size_t const blockCRCSize = BFSize * prefsPtr->frameInfo.blockChecksumFlag; size_t const frameEnd = BHSize + (prefsPtr->frameInfo.contentChecksumFlag*BFSize); return ((BHSize + blockCRCSize) * nbBlocks) + (blockSize * nbFullBlocks) + lastBlockSize + frameEnd; } } size_t LZ4F_compressFrameBound(size_t srcSize, const LZ4F_preferences_t* preferencesPtr) { LZ4F_preferences_t prefs; size_t const headerSize = maxFHSize; /* max header size, including optional fields */ if (preferencesPtr!=NULL) prefs = *preferencesPtr; else MEM_INIT(&prefs, 0, sizeof(prefs)); prefs.autoFlush = 1; return headerSize + LZ4F_compressBound_internal(srcSize, &prefs, 0);; } /*! LZ4F_compressFrame_usingCDict() : * Compress srcBuffer using a dictionary, in a single step. * cdict can be NULL, in which case, no dictionary is used. * dstBuffer MUST be >= LZ4F_compressFrameBound(srcSize, preferencesPtr). * The LZ4F_preferences_t structure is optional : you may provide NULL as argument, * however, it's the only way to provide a dictID, so it's not recommended. * @return : number of bytes written into dstBuffer, * or an error code if it fails (can be tested using LZ4F_isError()) */ size_t LZ4F_compressFrame_usingCDict(LZ4F_cctx* cctx, void* dstBuffer, size_t dstCapacity, const void* srcBuffer, size_t srcSize, const LZ4F_CDict* cdict, const LZ4F_preferences_t* preferencesPtr) { LZ4F_preferences_t prefs; LZ4F_compressOptions_t options; BYTE* const dstStart = (BYTE*) dstBuffer; BYTE* dstPtr = dstStart; BYTE* const dstEnd = dstStart + dstCapacity; DEBUGLOG(4, "LZ4F_compressFrame_usingCDict (srcSize=%u)", (unsigned)srcSize); if (preferencesPtr!=NULL) prefs = *preferencesPtr; else MEM_INIT(&prefs, 0, sizeof(prefs)); if (prefs.frameInfo.contentSize != 0) prefs.frameInfo.contentSize = (U64)srcSize; /* auto-correct content size if selected (!=0) */ prefs.frameInfo.blockSizeID = LZ4F_optimalBSID(prefs.frameInfo.blockSizeID, srcSize); prefs.autoFlush = 1; if (srcSize <= LZ4F_getBlockSize(prefs.frameInfo.blockSizeID)) prefs.frameInfo.blockMode = LZ4F_blockIndependent; /* only one block => no need for inter-block link */ MEM_INIT(&options, 0, sizeof(options)); options.stableSrc = 1; RETURN_ERROR_IF(dstCapacity < LZ4F_compressFrameBound(srcSize, &prefs), dstMaxSize_tooSmall); { size_t const headerSize = LZ4F_compressBegin_usingCDict(cctx, dstBuffer, dstCapacity, cdict, &prefs); /* write header */ FORWARD_IF_ERROR(headerSize); dstPtr += headerSize; /* header size */ } assert(dstEnd >= dstPtr); { size_t const cSize = LZ4F_compressUpdate(cctx, dstPtr, (size_t)(dstEnd-dstPtr), srcBuffer, srcSize, &options); FORWARD_IF_ERROR(cSize); dstPtr += cSize; } assert(dstEnd >= dstPtr); { size_t const tailSize = LZ4F_compressEnd(cctx, dstPtr, (size_t)(dstEnd-dstPtr), &options); /* flush last block, and generate suffix */ FORWARD_IF_ERROR(tailSize); dstPtr += tailSize; } assert(dstEnd >= dstStart); return (size_t)(dstPtr - dstStart); } /*! LZ4F_compressFrame() : * Compress an entire srcBuffer into a valid LZ4 frame, in a single step. * dstBuffer MUST be >= LZ4F_compressFrameBound(srcSize, preferencesPtr). * The LZ4F_preferences_t structure is optional : you can provide NULL as argument. All preferences will be set to default. * @return : number of bytes written into dstBuffer. * or an error code if it fails (can be tested using LZ4F_isError()) */ size_t LZ4F_compressFrame(void* dstBuffer, size_t dstCapacity, const void* srcBuffer, size_t srcSize, const LZ4F_preferences_t* preferencesPtr) { size_t result; #if (LZ4F_HEAPMODE) LZ4F_cctx_t* cctxPtr; result = LZ4F_createCompressionContext(&cctxPtr, LZ4F_VERSION); FORWARD_IF_ERROR(result); #else LZ4F_cctx_t cctx; LZ4_stream_t lz4ctx; LZ4F_cctx_t* const cctxPtr = &cctx; MEM_INIT(&cctx, 0, sizeof(cctx)); cctx.version = LZ4F_VERSION; cctx.maxBufferSize = 5 MB; /* mess with real buffer size to prevent dynamic allocation; works only because autoflush==1 & stableSrc==1 */ if ( preferencesPtr == NULL || preferencesPtr->compressionLevel < LZ4HC_CLEVEL_MIN ) { LZ4_initStream(&lz4ctx, sizeof(lz4ctx)); cctxPtr->lz4CtxPtr = &lz4ctx; cctxPtr->lz4CtxAlloc = 1; cctxPtr->lz4CtxType = ctxFast; } #endif DEBUGLOG(4, "LZ4F_compressFrame"); result = LZ4F_compressFrame_usingCDict(cctxPtr, dstBuffer, dstCapacity, srcBuffer, srcSize, NULL, preferencesPtr); #if (LZ4F_HEAPMODE) LZ4F_freeCompressionContext(cctxPtr); #else if ( preferencesPtr != NULL && preferencesPtr->compressionLevel >= LZ4HC_CLEVEL_MIN ) { LZ4F_free(cctxPtr->lz4CtxPtr, cctxPtr->cmem); } #endif return result; } /*-*************************************************** * Dictionary compression *****************************************************/ struct LZ4F_CDict_s { LZ4F_CustomMem cmem; void* dictContent; LZ4_stream_t* fastCtx; LZ4_streamHC_t* HCCtx; }; /* typedef'd to LZ4F_CDict within lz4frame_static.h */ LZ4F_CDict* LZ4F_createCDict_advanced(LZ4F_CustomMem cmem, const void* dictBuffer, size_t dictSize) { const char* dictStart = (const char*)dictBuffer; LZ4F_CDict* const cdict = (LZ4F_CDict*)LZ4F_malloc(sizeof(*cdict), cmem); DEBUGLOG(4, "LZ4F_createCDict_advanced"); if (!cdict) return NULL; cdict->cmem = cmem; if (dictSize > 64 KB) { dictStart += dictSize - 64 KB; dictSize = 64 KB; } cdict->dictContent = LZ4F_malloc(dictSize, cmem); /* note: using @cmem to allocate => can't use default create */ cdict->fastCtx = (LZ4_stream_t*)LZ4F_malloc(sizeof(LZ4_stream_t), cmem); cdict->HCCtx = (LZ4_streamHC_t*)LZ4F_malloc(sizeof(LZ4_streamHC_t), cmem); if (!cdict->dictContent || !cdict->fastCtx || !cdict->HCCtx) { LZ4F_freeCDict(cdict); return NULL; } memcpy(cdict->dictContent, dictStart, dictSize); LZ4_initStream(cdict->fastCtx, sizeof(LZ4_stream_t)); LZ4_loadDictSlow(cdict->fastCtx, (const char*)cdict->dictContent, (int)dictSize); LZ4_initStreamHC(cdict->HCCtx, sizeof(LZ4_streamHC_t)); /* note: we don't know at this point which compression level is going to be used * as a consequence, HCCtx is created for the more common HC mode */ LZ4_setCompressionLevel(cdict->HCCtx, LZ4HC_CLEVEL_DEFAULT); LZ4_loadDictHC(cdict->HCCtx, (const char*)cdict->dictContent, (int)dictSize); return cdict; } /*! LZ4F_createCDict() : * When compressing multiple messages / blocks with the same dictionary, it's recommended to load it just once. * LZ4F_createCDict() will create a digested dictionary, ready to start future compression operations without startup delay. * LZ4F_CDict can be created once and shared by multiple threads concurrently, since its usage is read-only. * @dictBuffer can be released after LZ4F_CDict creation, since its content is copied within CDict * @return : digested dictionary for compression, or NULL if failed */ LZ4F_CDict* LZ4F_createCDict(const void* dictBuffer, size_t dictSize) { DEBUGLOG(4, "LZ4F_createCDict"); return LZ4F_createCDict_advanced(LZ4F_defaultCMem, dictBuffer, dictSize); } void LZ4F_freeCDict(LZ4F_CDict* cdict) { if (cdict==NULL) return; /* support free on NULL */ LZ4F_free(cdict->dictContent, cdict->cmem); LZ4F_free(cdict->fastCtx, cdict->cmem); LZ4F_free(cdict->HCCtx, cdict->cmem); LZ4F_free(cdict, cdict->cmem); } /*-********************************* * Advanced compression functions ***********************************/ LZ4F_cctx* LZ4F_createCompressionContext_advanced(LZ4F_CustomMem customMem, unsigned version) { LZ4F_cctx* const cctxPtr = (LZ4F_cctx*)LZ4F_calloc(sizeof(LZ4F_cctx), customMem); if (cctxPtr==NULL) return NULL; cctxPtr->cmem = customMem; cctxPtr->version = version; cctxPtr->cStage = 0; /* Uninitialized. Next stage : init cctx */ return cctxPtr; } /*! LZ4F_createCompressionContext() : * The first thing to do is to create a compressionContext object, which will be used in all compression operations. * This is achieved using LZ4F_createCompressionContext(), which takes as argument a version and an LZ4F_preferences_t structure. * The version provided MUST be LZ4F_VERSION. It is intended to track potential incompatible differences between different binaries. * The function will provide a pointer to an allocated LZ4F_compressionContext_t object. * If the result LZ4F_errorCode_t is not OK_NoError, there was an error during context creation. * Object can release its memory using LZ4F_freeCompressionContext(); **/ LZ4F_errorCode_t LZ4F_createCompressionContext(LZ4F_cctx** LZ4F_compressionContextPtr, unsigned version) { assert(LZ4F_compressionContextPtr != NULL); /* considered a violation of narrow contract */ /* in case it nonetheless happen in production */ RETURN_ERROR_IF(LZ4F_compressionContextPtr == NULL, parameter_null); *LZ4F_compressionContextPtr = LZ4F_createCompressionContext_advanced(LZ4F_defaultCMem, version); RETURN_ERROR_IF(*LZ4F_compressionContextPtr==NULL, allocation_failed); return LZ4F_OK_NoError; } LZ4F_errorCode_t LZ4F_freeCompressionContext(LZ4F_cctx* cctxPtr) { if (cctxPtr != NULL) { /* support free on NULL */ LZ4F_free(cctxPtr->lz4CtxPtr, cctxPtr->cmem); /* note: LZ4_streamHC_t and LZ4_stream_t are simple POD types */ LZ4F_free(cctxPtr->tmpBuff, cctxPtr->cmem); LZ4F_free(cctxPtr, cctxPtr->cmem); } return LZ4F_OK_NoError; } /** * This function prepares the internal LZ4(HC) stream for a new compression, * resetting the context and attaching the dictionary, if there is one. * * It needs to be called at the beginning of each independent compression * stream (i.e., at the beginning of a frame in blockLinked mode, or at the * beginning of each block in blockIndependent mode). */ static void LZ4F_initStream(void* ctx, const LZ4F_CDict* cdict, int level, LZ4F_blockMode_t blockMode) { if (level < LZ4HC_CLEVEL_MIN) { if (cdict || blockMode == LZ4F_blockLinked) { /* In these cases, we will call LZ4_compress_fast_continue(), * which needs an already reset context. Otherwise, we'll call a * one-shot API. The non-continued APIs internally perform their own * resets at the beginning of their calls, where they know what * tableType they need the context to be in. So in that case this * would be misguided / wasted work. */ LZ4_resetStream_fast((LZ4_stream_t*)ctx); if (cdict) LZ4_attach_dictionary((LZ4_stream_t*)ctx, cdict->fastCtx); } /* In these cases, we'll call a one-shot API. * The non-continued APIs internally perform their own resets * at the beginning of their calls, where they know * which tableType they need the context to be in. * Therefore, a reset here would be wasted work. */ } else { LZ4_resetStreamHC_fast((LZ4_streamHC_t*)ctx, level); if (cdict) LZ4_attach_HC_dictionary((LZ4_streamHC_t*)ctx, cdict->HCCtx); } } static int ctxTypeID_to_size(int ctxTypeID) { switch(ctxTypeID) { case 1: return LZ4_sizeofState(); case 2: return LZ4_sizeofStateHC(); default: return 0; } } /* LZ4F_compressBegin_internal() * Note: only accepts @cdict _or_ @dictBuffer as non NULL. */ size_t LZ4F_compressBegin_internal(LZ4F_cctx* cctx, void* dstBuffer, size_t dstCapacity, const void* dictBuffer, size_t dictSize, const LZ4F_CDict* cdict, const LZ4F_preferences_t* preferencesPtr) { LZ4F_preferences_t const prefNull = LZ4F_INIT_PREFERENCES; BYTE* const dstStart = (BYTE*)dstBuffer; BYTE* dstPtr = dstStart; RETURN_ERROR_IF(dstCapacity < maxFHSize, dstMaxSize_tooSmall); if (preferencesPtr == NULL) preferencesPtr = &prefNull; cctx->prefs = *preferencesPtr; /* cctx Management */ { U16 const ctxTypeID = (cctx->prefs.compressionLevel < LZ4HC_CLEVEL_MIN) ? 1 : 2; int requiredSize = ctxTypeID_to_size(ctxTypeID); int allocatedSize = ctxTypeID_to_size(cctx->lz4CtxAlloc); if (allocatedSize < requiredSize) { /* not enough space allocated */ LZ4F_free(cctx->lz4CtxPtr, cctx->cmem); if (cctx->prefs.compressionLevel < LZ4HC_CLEVEL_MIN) { /* must take ownership of memory allocation, * in order to respect custom allocator contract */ cctx->lz4CtxPtr = LZ4F_malloc(sizeof(LZ4_stream_t), cctx->cmem); if (cctx->lz4CtxPtr) LZ4_initStream(cctx->lz4CtxPtr, sizeof(LZ4_stream_t)); } else { cctx->lz4CtxPtr = LZ4F_malloc(sizeof(LZ4_streamHC_t), cctx->cmem); if (cctx->lz4CtxPtr) LZ4_initStreamHC(cctx->lz4CtxPtr, sizeof(LZ4_streamHC_t)); } RETURN_ERROR_IF(cctx->lz4CtxPtr == NULL, allocation_failed); cctx->lz4CtxAlloc = ctxTypeID; cctx->lz4CtxType = ctxTypeID; } else if (cctx->lz4CtxType != ctxTypeID) { /* otherwise, a sufficient buffer is already allocated, * but we need to reset it to the correct context type */ if (cctx->prefs.compressionLevel < LZ4HC_CLEVEL_MIN) { LZ4_initStream((LZ4_stream_t*)cctx->lz4CtxPtr, sizeof(LZ4_stream_t)); } else { LZ4_initStreamHC((LZ4_streamHC_t*)cctx->lz4CtxPtr, sizeof(LZ4_streamHC_t)); LZ4_setCompressionLevel((LZ4_streamHC_t*)cctx->lz4CtxPtr, cctx->prefs.compressionLevel); } cctx->lz4CtxType = ctxTypeID; } } /* Buffer Management */ if (cctx->prefs.frameInfo.blockSizeID == 0) cctx->prefs.frameInfo.blockSizeID = LZ4F_BLOCKSIZEID_DEFAULT; cctx->maxBlockSize = LZ4F_getBlockSize(cctx->prefs.frameInfo.blockSizeID); { size_t const requiredBuffSize = preferencesPtr->autoFlush ? ((cctx->prefs.frameInfo.blockMode == LZ4F_blockLinked) ? 64 KB : 0) : /* only needs past data up to window size */ cctx->maxBlockSize + ((cctx->prefs.frameInfo.blockMode == LZ4F_blockLinked) ? 128 KB : 0); if (cctx->maxBufferSize < requiredBuffSize) { cctx->maxBufferSize = 0; LZ4F_free(cctx->tmpBuff, cctx->cmem); cctx->tmpBuff = (BYTE*)LZ4F_malloc(requiredBuffSize, cctx->cmem); RETURN_ERROR_IF(cctx->tmpBuff == NULL, allocation_failed); cctx->maxBufferSize = requiredBuffSize; } } cctx->tmpIn = cctx->tmpBuff; cctx->tmpInSize = 0; (void)XXH32_reset(&(cctx->xxh), 0); /* context init */ cctx->cdict = cdict; if (cctx->prefs.frameInfo.blockMode == LZ4F_blockLinked) { /* frame init only for blockLinked : blockIndependent will be init at each block */ LZ4F_initStream(cctx->lz4CtxPtr, cdict, cctx->prefs.compressionLevel, LZ4F_blockLinked); } if (preferencesPtr->compressionLevel >= LZ4HC_CLEVEL_MIN) { LZ4_favorDecompressionSpeed((LZ4_streamHC_t*)cctx->lz4CtxPtr, (int)preferencesPtr->favorDecSpeed); } if (dictBuffer) { assert(cdict == NULL); RETURN_ERROR_IF(dictSize > INT_MAX, parameter_invalid); if (cctx->lz4CtxType == ctxFast) { /* lz4 fast*/ LZ4_loadDict((LZ4_stream_t*)cctx->lz4CtxPtr, (const char*)dictBuffer, (int)dictSize); } else { /* lz4hc */ assert(cctx->lz4CtxType == ctxHC); LZ4_loadDictHC((LZ4_streamHC_t*)cctx->lz4CtxPtr, (const char*)dictBuffer, (int)dictSize); } } /* Stage 2 : Write Frame Header */ /* Magic Number */ LZ4F_writeLE32(dstPtr, LZ4F_MAGICNUMBER); dstPtr += 4; { BYTE* const headerStart = dstPtr; /* FLG Byte */ *dstPtr++ = (BYTE)(((1 & _2BITS) << 6) /* Version('01') */ + ((cctx->prefs.frameInfo.blockMode & _1BIT ) << 5) + ((cctx->prefs.frameInfo.blockChecksumFlag & _1BIT ) << 4) + ((unsigned)(cctx->prefs.frameInfo.contentSize > 0) << 3) + ((cctx->prefs.frameInfo.contentChecksumFlag & _1BIT ) << 2) + (cctx->prefs.frameInfo.dictID > 0) ); /* BD Byte */ *dstPtr++ = (BYTE)((cctx->prefs.frameInfo.blockSizeID & _3BITS) << 4); /* Optional Frame content size field */ if (cctx->prefs.frameInfo.contentSize) { LZ4F_writeLE64(dstPtr, cctx->prefs.frameInfo.contentSize); dstPtr += 8; cctx->totalInSize = 0; } /* Optional dictionary ID field */ if (cctx->prefs.frameInfo.dictID) { LZ4F_writeLE32(dstPtr, cctx->prefs.frameInfo.dictID); dstPtr += 4; } /* Header CRC Byte */ *dstPtr = LZ4F_headerChecksum(headerStart, (size_t)(dstPtr - headerStart)); dstPtr++; } cctx->cStage = 1; /* header written, now request input data block */ return (size_t)(dstPtr - dstStart); } size_t LZ4F_compressBegin(LZ4F_cctx* cctx, void* dstBuffer, size_t dstCapacity, const LZ4F_preferences_t* preferencesPtr) { return LZ4F_compressBegin_internal(cctx, dstBuffer, dstCapacity, NULL, 0, NULL, preferencesPtr); } /* LZ4F_compressBegin_usingDictOnce: * Hidden implementation, * employed for multi-threaded compression * when frame defines linked blocks */ size_t LZ4F_compressBegin_usingDictOnce(LZ4F_cctx* cctx, void* dstBuffer, size_t dstCapacity, const void* dict, size_t dictSize, const LZ4F_preferences_t* preferencesPtr) { return LZ4F_compressBegin_internal(cctx, dstBuffer, dstCapacity, dict, dictSize, NULL, preferencesPtr); } size_t LZ4F_compressBegin_usingDict(LZ4F_cctx* cctx, void* dstBuffer, size_t dstCapacity, const void* dict, size_t dictSize, const LZ4F_preferences_t* preferencesPtr) { /* note : incorrect implementation : * this will only use the dictionary once, * instead of once *per* block when frames defines independent blocks */ return LZ4F_compressBegin_usingDictOnce(cctx, dstBuffer, dstCapacity, dict, dictSize, preferencesPtr); } size_t LZ4F_compressBegin_usingCDict(LZ4F_cctx* cctx, void* dstBuffer, size_t dstCapacity, const LZ4F_CDict* cdict, const LZ4F_preferences_t* preferencesPtr) { return LZ4F_compressBegin_internal(cctx, dstBuffer, dstCapacity, NULL, 0, cdict, preferencesPtr); } /* LZ4F_compressBound() : * @return minimum capacity of dstBuffer for a given srcSize to handle worst case scenario. * LZ4F_preferences_t structure is optional : if NULL, preferences will be set to cover worst case scenario. * This function cannot fail. */ size_t LZ4F_compressBound(size_t srcSize, const LZ4F_preferences_t* preferencesPtr) { if (preferencesPtr && preferencesPtr->autoFlush) { return LZ4F_compressBound_internal(srcSize, preferencesPtr, 0); } return LZ4F_compressBound_internal(srcSize, preferencesPtr, (size_t)-1); } typedef int (*compressFunc_t)(void* ctx, const char* src, char* dst, int srcSize, int dstSize, int level, const LZ4F_CDict* cdict); /*! LZ4F_makeBlock(): * compress a single block, add header and optional checksum. * assumption : dst buffer capacity is >= BHSize + srcSize + crcSize */ static size_t LZ4F_makeBlock(void* dst, const void* src, size_t srcSize, compressFunc_t compress, void* lz4ctx, int level, const LZ4F_CDict* cdict, LZ4F_blockChecksum_t crcFlag) { BYTE* const cSizePtr = (BYTE*)dst; U32 cSize; assert(compress != NULL); cSize = (U32)compress(lz4ctx, (const char*)src, (char*)(cSizePtr+BHSize), (int)(srcSize), (int)(srcSize-1), level, cdict); if (cSize == 0 || cSize >= srcSize) { cSize = (U32)srcSize; LZ4F_writeLE32(cSizePtr, cSize | LZ4F_BLOCKUNCOMPRESSED_FLAG); memcpy(cSizePtr+BHSize, src, srcSize); } else { LZ4F_writeLE32(cSizePtr, cSize); } if (crcFlag) { U32 const crc32 = XXH32(cSizePtr+BHSize, cSize, 0); /* checksum of compressed data */ LZ4F_writeLE32(cSizePtr+BHSize+cSize, crc32); } return BHSize + cSize + ((U32)crcFlag)*BFSize; } static int LZ4F_compressBlock(void* ctx, const char* src, char* dst, int srcSize, int dstCapacity, int level, const LZ4F_CDict* cdict) { int const acceleration = (level < 0) ? -level + 1 : 1; DEBUGLOG(5, "LZ4F_compressBlock (srcSize=%i)", srcSize); LZ4F_initStream(ctx, cdict, level, LZ4F_blockIndependent); if (cdict) { return LZ4_compress_fast_continue((LZ4_stream_t*)ctx, src, dst, srcSize, dstCapacity, acceleration); } else { return LZ4_compress_fast_extState_fastReset(ctx, src, dst, srcSize, dstCapacity, acceleration); } } static int LZ4F_compressBlock_continue(void* ctx, const char* src, char* dst, int srcSize, int dstCapacity, int level, const LZ4F_CDict* cdict) { int const acceleration = (level < 0) ? -level + 1 : 1; (void)cdict; /* init once at beginning of frame */ DEBUGLOG(5, "LZ4F_compressBlock_continue (srcSize=%i)", srcSize); return LZ4_compress_fast_continue((LZ4_stream_t*)ctx, src, dst, srcSize, dstCapacity, acceleration); } static int LZ4F_compressBlockHC(void* ctx, const char* src, char* dst, int srcSize, int dstCapacity, int level, const LZ4F_CDict* cdict) { LZ4F_initStream(ctx, cdict, level, LZ4F_blockIndependent); if (cdict) { return LZ4_compress_HC_continue((LZ4_streamHC_t*)ctx, src, dst, srcSize, dstCapacity); } return LZ4_compress_HC_extStateHC_fastReset(ctx, src, dst, srcSize, dstCapacity, level); } static int LZ4F_compressBlockHC_continue(void* ctx, const char* src, char* dst, int srcSize, int dstCapacity, int level, const LZ4F_CDict* cdict) { (void)level; (void)cdict; /* init once at beginning of frame */ return LZ4_compress_HC_continue((LZ4_streamHC_t*)ctx, src, dst, srcSize, dstCapacity); } static int LZ4F_doNotCompressBlock(void* ctx, const char* src, char* dst, int srcSize, int dstCapacity, int level, const LZ4F_CDict* cdict) { (void)ctx; (void)src; (void)dst; (void)srcSize; (void)dstCapacity; (void)level; (void)cdict; return 0; } static compressFunc_t LZ4F_selectCompression(LZ4F_blockMode_t blockMode, int level, LZ4F_BlockCompressMode_e compressMode) { if (compressMode == LZ4B_UNCOMPRESSED) return LZ4F_doNotCompressBlock; if (level < LZ4HC_CLEVEL_MIN) { if (blockMode == LZ4F_blockIndependent) return LZ4F_compressBlock; return LZ4F_compressBlock_continue; } if (blockMode == LZ4F_blockIndependent) return LZ4F_compressBlockHC; return LZ4F_compressBlockHC_continue; } /* Save history (up to 64KB) into @tmpBuff */ static int LZ4F_localSaveDict(LZ4F_cctx_t* cctxPtr) { if (cctxPtr->prefs.compressionLevel < LZ4HC_CLEVEL_MIN) return LZ4_saveDict ((LZ4_stream_t*)(cctxPtr->lz4CtxPtr), (char*)(cctxPtr->tmpBuff), 64 KB); return LZ4_saveDictHC ((LZ4_streamHC_t*)(cctxPtr->lz4CtxPtr), (char*)(cctxPtr->tmpBuff), 64 KB); } typedef enum { notDone, fromTmpBuffer, fromSrcBuffer } LZ4F_lastBlockStatus; static const LZ4F_compressOptions_t k_cOptionsNull = { 0, { 0, 0, 0 } }; /*! LZ4F_compressUpdateImpl() : * LZ4F_compressUpdate() can be called repetitively to compress as much data as necessary. * When successful, the function always entirely consumes @srcBuffer. * src data is either buffered or compressed into @dstBuffer. * If the block compression does not match the compression of the previous block, the old data is flushed * and operations continue with the new compression mode. * @dstCapacity MUST be >= LZ4F_compressBound(srcSize, preferencesPtr) when block compression is turned on. * @compressOptionsPtr is optional : provide NULL to mean "default". * @return : the number of bytes written into dstBuffer. It can be zero, meaning input data was just buffered. * or an error code if it fails (which can be tested using LZ4F_isError()) * After an error, the state is left in a UB state, and must be re-initialized. */ static size_t LZ4F_compressUpdateImpl(LZ4F_cctx* cctxPtr, void* dstBuffer, size_t dstCapacity, const void* srcBuffer, size_t srcSize, const LZ4F_compressOptions_t* compressOptionsPtr, LZ4F_BlockCompressMode_e blockCompression) { size_t const blockSize = cctxPtr->maxBlockSize; const BYTE* srcPtr = (const BYTE*)srcBuffer; const BYTE* const srcEnd = srcPtr + srcSize; BYTE* const dstStart = (BYTE*)dstBuffer; BYTE* dstPtr = dstStart; LZ4F_lastBlockStatus lastBlockCompressed = notDone; compressFunc_t const compress = LZ4F_selectCompression(cctxPtr->prefs.frameInfo.blockMode, cctxPtr->prefs.compressionLevel, blockCompression); size_t bytesWritten; DEBUGLOG(4, "LZ4F_compressUpdate (srcSize=%zu)", srcSize); RETURN_ERROR_IF(cctxPtr->cStage != 1, compressionState_uninitialized); /* state must be initialized and waiting for next block */ if (dstCapacity < LZ4F_compressBound_internal(srcSize, &(cctxPtr->prefs), cctxPtr->tmpInSize)) RETURN_ERROR(dstMaxSize_tooSmall); if (blockCompression == LZ4B_UNCOMPRESSED && dstCapacity < srcSize) RETURN_ERROR(dstMaxSize_tooSmall); /* flush currently written block, to continue with new block compression */ if (cctxPtr->blockCompressMode != blockCompression) { bytesWritten = LZ4F_flush(cctxPtr, dstBuffer, dstCapacity, compressOptionsPtr); dstPtr += bytesWritten; cctxPtr->blockCompressMode = blockCompression; } if (compressOptionsPtr == NULL) compressOptionsPtr = &k_cOptionsNull; /* complete tmp buffer */ if (cctxPtr->tmpInSize > 0) { /* some data already within tmp buffer */ size_t const sizeToCopy = blockSize - cctxPtr->tmpInSize; assert(blockSize > cctxPtr->tmpInSize); if (sizeToCopy > srcSize) { /* add src to tmpIn buffer */ memcpy(cctxPtr->tmpIn + cctxPtr->tmpInSize, srcBuffer, srcSize); srcPtr = srcEnd; cctxPtr->tmpInSize += srcSize; /* still needs some CRC */ } else { /* complete tmpIn block and then compress it */ lastBlockCompressed = fromTmpBuffer; memcpy(cctxPtr->tmpIn + cctxPtr->tmpInSize, srcBuffer, sizeToCopy); srcPtr += sizeToCopy; dstPtr += LZ4F_makeBlock(dstPtr, cctxPtr->tmpIn, blockSize, compress, cctxPtr->lz4CtxPtr, cctxPtr->prefs.compressionLevel, cctxPtr->cdict, cctxPtr->prefs.frameInfo.blockChecksumFlag); if (cctxPtr->prefs.frameInfo.blockMode==LZ4F_blockLinked) cctxPtr->tmpIn += blockSize; cctxPtr->tmpInSize = 0; } } while ((size_t)(srcEnd - srcPtr) >= blockSize) { /* compress full blocks */ lastBlockCompressed = fromSrcBuffer; dstPtr += LZ4F_makeBlock(dstPtr, srcPtr, blockSize, compress, cctxPtr->lz4CtxPtr, cctxPtr->prefs.compressionLevel, cctxPtr->cdict, cctxPtr->prefs.frameInfo.blockChecksumFlag); srcPtr += blockSize; } if ((cctxPtr->prefs.autoFlush) && (srcPtr < srcEnd)) { /* autoFlush : remaining input (< blockSize) is compressed */ lastBlockCompressed = fromSrcBuffer; dstPtr += LZ4F_makeBlock(dstPtr, srcPtr, (size_t)(srcEnd - srcPtr), compress, cctxPtr->lz4CtxPtr, cctxPtr->prefs.compressionLevel, cctxPtr->cdict, cctxPtr->prefs.frameInfo.blockChecksumFlag); srcPtr = srcEnd; } /* preserve dictionary within @tmpBuff whenever necessary */ if ((cctxPtr->prefs.frameInfo.blockMode==LZ4F_blockLinked) && (lastBlockCompressed==fromSrcBuffer)) { /* linked blocks are only supported in compressed mode, see LZ4F_uncompressedUpdate */ assert(blockCompression == LZ4B_COMPRESSED); if (compressOptionsPtr->stableSrc) { cctxPtr->tmpIn = cctxPtr->tmpBuff; /* src is stable : dictionary remains in src across invocations */ } else { int const realDictSize = LZ4F_localSaveDict(cctxPtr); assert(0 <= realDictSize && realDictSize <= 64 KB); cctxPtr->tmpIn = cctxPtr->tmpBuff + realDictSize; } } /* keep tmpIn within limits */ if (!(cctxPtr->prefs.autoFlush) /* no autoflush : there may be some data left within internal buffer */ && (cctxPtr->tmpIn + blockSize) > (cctxPtr->tmpBuff + cctxPtr->maxBufferSize) ) /* not enough room to store next block */ { /* only preserve 64KB within internal buffer. Ensures there is enough room for next block. * note: this situation necessarily implies lastBlockCompressed==fromTmpBuffer */ int const realDictSize = LZ4F_localSaveDict(cctxPtr); cctxPtr->tmpIn = cctxPtr->tmpBuff + realDictSize; assert((cctxPtr->tmpIn + blockSize) <= (cctxPtr->tmpBuff + cctxPtr->maxBufferSize)); } /* some input data left, necessarily < blockSize */ if (srcPtr < srcEnd) { /* fill tmp buffer */ size_t const sizeToCopy = (size_t)(srcEnd - srcPtr); memcpy(cctxPtr->tmpIn, srcPtr, sizeToCopy); cctxPtr->tmpInSize = sizeToCopy; } if (cctxPtr->prefs.frameInfo.contentChecksumFlag == LZ4F_contentChecksumEnabled) (void)XXH32_update(&(cctxPtr->xxh), srcBuffer, srcSize); cctxPtr->totalInSize += srcSize; return (size_t)(dstPtr - dstStart); } /*! LZ4F_compressUpdate() : * LZ4F_compressUpdate() can be called repetitively to compress as much data as necessary. * When successful, the function always entirely consumes @srcBuffer. * src data is either buffered or compressed into @dstBuffer. * If previously an uncompressed block was written, buffered data is flushed * before appending compressed data is continued. * @dstCapacity MUST be >= LZ4F_compressBound(srcSize, preferencesPtr). * @compressOptionsPtr is optional : provide NULL to mean "default". * @return : the number of bytes written into dstBuffer. It can be zero, meaning input data was just buffered. * or an error code if it fails (which can be tested using LZ4F_isError()) * After an error, the state is left in a UB state, and must be re-initialized. */ size_t LZ4F_compressUpdate(LZ4F_cctx* cctxPtr, void* dstBuffer, size_t dstCapacity, const void* srcBuffer, size_t srcSize, const LZ4F_compressOptions_t* compressOptionsPtr) { return LZ4F_compressUpdateImpl(cctxPtr, dstBuffer, dstCapacity, srcBuffer, srcSize, compressOptionsPtr, LZ4B_COMPRESSED); } /*! LZ4F_uncompressedUpdate() : * Same as LZ4F_compressUpdate(), but requests blocks to be sent uncompressed. * This symbol is only supported when LZ4F_blockIndependent is used * @dstCapacity MUST be >= LZ4F_compressBound(srcSize, preferencesPtr). * @compressOptionsPtr is optional : provide NULL to mean "default". * @return : the number of bytes written into dstBuffer. It can be zero, meaning input data was just buffered. * or an error code if it fails (which can be tested using LZ4F_isError()) * After an error, the state is left in a UB state, and must be re-initialized. */ size_t LZ4F_uncompressedUpdate(LZ4F_cctx* cctxPtr, void* dstBuffer, size_t dstCapacity, const void* srcBuffer, size_t srcSize, const LZ4F_compressOptions_t* compressOptionsPtr) { return LZ4F_compressUpdateImpl(cctxPtr, dstBuffer, dstCapacity, srcBuffer, srcSize, compressOptionsPtr, LZ4B_UNCOMPRESSED); } /*! LZ4F_flush() : * When compressed data must be sent immediately, without waiting for a block to be filled, * invoke LZ4_flush(), which will immediately compress any remaining data stored within LZ4F_cctx. * The result of the function is the number of bytes written into dstBuffer. * It can be zero, this means there was no data left within LZ4F_cctx. * The function outputs an error code if it fails (can be tested using LZ4F_isError()) * LZ4F_compressOptions_t* is optional. NULL is a valid argument. */ size_t LZ4F_flush(LZ4F_cctx* cctxPtr, void* dstBuffer, size_t dstCapacity, const LZ4F_compressOptions_t* compressOptionsPtr) { BYTE* const dstStart = (BYTE*)dstBuffer; BYTE* dstPtr = dstStart; compressFunc_t compress; if (cctxPtr->tmpInSize == 0) return 0; /* nothing to flush */ RETURN_ERROR_IF(cctxPtr->cStage != 1, compressionState_uninitialized); RETURN_ERROR_IF(dstCapacity < (cctxPtr->tmpInSize + BHSize + BFSize), dstMaxSize_tooSmall); (void)compressOptionsPtr; /* not useful (yet) */ /* select compression function */ compress = LZ4F_selectCompression(cctxPtr->prefs.frameInfo.blockMode, cctxPtr->prefs.compressionLevel, cctxPtr->blockCompressMode); /* compress tmp buffer */ dstPtr += LZ4F_makeBlock(dstPtr, cctxPtr->tmpIn, cctxPtr->tmpInSize, compress, cctxPtr->lz4CtxPtr, cctxPtr->prefs.compressionLevel, cctxPtr->cdict, cctxPtr->prefs.frameInfo.blockChecksumFlag); assert(((void)"flush overflows dstBuffer!", (size_t)(dstPtr - dstStart) <= dstCapacity)); if (cctxPtr->prefs.frameInfo.blockMode == LZ4F_blockLinked) cctxPtr->tmpIn += cctxPtr->tmpInSize; cctxPtr->tmpInSize = 0; /* keep tmpIn within limits */ if ((cctxPtr->tmpIn + cctxPtr->maxBlockSize) > (cctxPtr->tmpBuff + cctxPtr->maxBufferSize)) { /* necessarily LZ4F_blockLinked */ int const realDictSize = LZ4F_localSaveDict(cctxPtr); cctxPtr->tmpIn = cctxPtr->tmpBuff + realDictSize; } return (size_t)(dstPtr - dstStart); } /*! LZ4F_compressEnd() : * When you want to properly finish the compressed frame, just call LZ4F_compressEnd(). * It will flush whatever data remained within compressionContext (like LZ4_flush()) * but also properly finalize the frame, with an endMark and an (optional) checksum. * LZ4F_compressOptions_t structure is optional : you can provide NULL as argument. * @return: the number of bytes written into dstBuffer (necessarily >= 4 (endMark size)) * or an error code if it fails (can be tested using LZ4F_isError()) * The context can then be used again to compress a new frame, starting with LZ4F_compressBegin(). */ size_t LZ4F_compressEnd(LZ4F_cctx* cctxPtr, void* dstBuffer, size_t dstCapacity, const LZ4F_compressOptions_t* compressOptionsPtr) { BYTE* const dstStart = (BYTE*)dstBuffer; BYTE* dstPtr = dstStart; size_t const flushSize = LZ4F_flush(cctxPtr, dstBuffer, dstCapacity, compressOptionsPtr); DEBUGLOG(5,"LZ4F_compressEnd: dstCapacity=%u", (unsigned)dstCapacity); FORWARD_IF_ERROR(flushSize); dstPtr += flushSize; assert(flushSize <= dstCapacity); dstCapacity -= flushSize; RETURN_ERROR_IF(dstCapacity < 4, dstMaxSize_tooSmall); LZ4F_writeLE32(dstPtr, 0); dstPtr += 4; /* endMark */ if (cctxPtr->prefs.frameInfo.contentChecksumFlag == LZ4F_contentChecksumEnabled) { U32 const xxh = XXH32_digest(&(cctxPtr->xxh)); RETURN_ERROR_IF(dstCapacity < 8, dstMaxSize_tooSmall); DEBUGLOG(5,"Writing 32-bit content checksum (0x%0X)", xxh); LZ4F_writeLE32(dstPtr, xxh); dstPtr+=4; /* content Checksum */ } cctxPtr->cStage = 0; /* state is now re-usable (with identical preferences) */ if (cctxPtr->prefs.frameInfo.contentSize) { if (cctxPtr->prefs.frameInfo.contentSize != cctxPtr->totalInSize) RETURN_ERROR(frameSize_wrong); } return (size_t)(dstPtr - dstStart); } /*-*************************************************** * Frame Decompression *****************************************************/ typedef enum { dstage_getFrameHeader=0, dstage_storeFrameHeader, dstage_init, dstage_getBlockHeader, dstage_storeBlockHeader, dstage_copyDirect, dstage_getBlockChecksum, dstage_getCBlock, dstage_storeCBlock, dstage_flushOut, dstage_getSuffix, dstage_storeSuffix, dstage_getSFrameSize, dstage_storeSFrameSize, dstage_skipSkippable } dStage_t; struct LZ4F_dctx_s { LZ4F_CustomMem cmem; LZ4F_frameInfo_t frameInfo; U32 version; dStage_t dStage; U64 frameRemainingSize; size_t maxBlockSize; size_t maxBufferSize; BYTE* tmpIn; size_t tmpInSize; size_t tmpInTarget; BYTE* tmpOutBuffer; const BYTE* dict; size_t dictSize; BYTE* tmpOut; size_t tmpOutSize; size_t tmpOutStart; XXH32_state_t xxh; XXH32_state_t blockChecksum; int skipChecksum; BYTE header[LZ4F_HEADER_SIZE_MAX]; }; /* typedef'd to LZ4F_dctx in lz4frame.h */ LZ4F_dctx* LZ4F_createDecompressionContext_advanced(LZ4F_CustomMem customMem, unsigned version) { LZ4F_dctx* const dctx = (LZ4F_dctx*)LZ4F_calloc(sizeof(LZ4F_dctx), customMem); if (dctx == NULL) return NULL; dctx->cmem = customMem; dctx->version = version; return dctx; } /*! LZ4F_createDecompressionContext() : * Create a decompressionContext object, which will track all decompression operations. * Provides a pointer to a fully allocated and initialized LZ4F_decompressionContext object. * Object can later be released using LZ4F_freeDecompressionContext(). * @return : if != 0, there was an error during context creation. */ LZ4F_errorCode_t LZ4F_createDecompressionContext(LZ4F_dctx** LZ4F_decompressionContextPtr, unsigned versionNumber) { assert(LZ4F_decompressionContextPtr != NULL); /* violation of narrow contract */ RETURN_ERROR_IF(LZ4F_decompressionContextPtr == NULL, parameter_null); /* in case it nonetheless happen in production */ *LZ4F_decompressionContextPtr = LZ4F_createDecompressionContext_advanced(LZ4F_defaultCMem, versionNumber); if (*LZ4F_decompressionContextPtr == NULL) { /* failed allocation */ RETURN_ERROR(allocation_failed); } return LZ4F_OK_NoError; } LZ4F_errorCode_t LZ4F_freeDecompressionContext(LZ4F_dctx* dctx) { LZ4F_errorCode_t result = LZ4F_OK_NoError; if (dctx != NULL) { /* can accept NULL input, like free() */ result = (LZ4F_errorCode_t)dctx->dStage; LZ4F_free(dctx->tmpIn, dctx->cmem); LZ4F_free(dctx->tmpOutBuffer, dctx->cmem); LZ4F_free(dctx, dctx->cmem); } return result; } /*==--- Streaming Decompression operations ---==*/ void LZ4F_resetDecompressionContext(LZ4F_dctx* dctx) { DEBUGLOG(5, "LZ4F_resetDecompressionContext"); dctx->dStage = dstage_getFrameHeader; dctx->dict = NULL; dctx->dictSize = 0; dctx->skipChecksum = 0; dctx->frameRemainingSize = 0; } /*! LZ4F_decodeHeader() : * input : `src` points at the **beginning of the frame** * output : set internal values of dctx, such as * dctx->frameInfo and dctx->dStage. * Also allocates internal buffers. * @return : nb Bytes read from src (necessarily <= srcSize) * or an error code (testable with LZ4F_isError()) */ static size_t LZ4F_decodeHeader(LZ4F_dctx* dctx, const void* src, size_t srcSize) { unsigned blockMode, blockChecksumFlag, contentSizeFlag, contentChecksumFlag, dictIDFlag, blockSizeID; size_t frameHeaderSize; const BYTE* srcPtr = (const BYTE*)src; DEBUGLOG(5, "LZ4F_decodeHeader"); /* need to decode header to get frameInfo */ RETURN_ERROR_IF(srcSize < minFHSize, frameHeader_incomplete); /* minimal frame header size */ MEM_INIT(&(dctx->frameInfo), 0, sizeof(dctx->frameInfo)); /* special case : skippable frames */ if ((LZ4F_readLE32(srcPtr) & 0xFFFFFFF0U) == LZ4F_MAGIC_SKIPPABLE_START) { dctx->frameInfo.frameType = LZ4F_skippableFrame; if (src == (void*)(dctx->header)) { dctx->tmpInSize = srcSize; dctx->tmpInTarget = 8; dctx->dStage = dstage_storeSFrameSize; return srcSize; } else { dctx->dStage = dstage_getSFrameSize; return 4; } } /* control magic number */ #ifndef FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION if (LZ4F_readLE32(srcPtr) != LZ4F_MAGICNUMBER) { DEBUGLOG(4, "frame header error : unknown magic number"); RETURN_ERROR(frameType_unknown); } #endif dctx->frameInfo.frameType = LZ4F_frame; /* Flags */ { U32 const FLG = srcPtr[4]; U32 const version = (FLG>>6) & _2BITS; blockChecksumFlag = (FLG>>4) & _1BIT; blockMode = (FLG>>5) & _1BIT; contentSizeFlag = (FLG>>3) & _1BIT; contentChecksumFlag = (FLG>>2) & _1BIT; dictIDFlag = FLG & _1BIT; /* validate */ if (((FLG>>1)&_1BIT) != 0) RETURN_ERROR(reservedFlag_set); /* Reserved bit */ if (version != 1) RETURN_ERROR(headerVersion_wrong); /* Version Number, only supported value */ } DEBUGLOG(6, "contentSizeFlag: %u", contentSizeFlag); /* Frame Header Size */ frameHeaderSize = minFHSize + (contentSizeFlag?8:0) + (dictIDFlag?4:0); if (srcSize < frameHeaderSize) { /* not enough input to fully decode frame header */ if (srcPtr != dctx->header) memcpy(dctx->header, srcPtr, srcSize); dctx->tmpInSize = srcSize; dctx->tmpInTarget = frameHeaderSize; dctx->dStage = dstage_storeFrameHeader; return srcSize; } { U32 const BD = srcPtr[5]; blockSizeID = (BD>>4) & _3BITS; /* validate */ if (((BD>>7)&_1BIT) != 0) RETURN_ERROR(reservedFlag_set); /* Reserved bit */ if (blockSizeID < 4) RETURN_ERROR(maxBlockSize_invalid); /* 4-7 only supported values for the time being */ if (((BD>>0)&_4BITS) != 0) RETURN_ERROR(reservedFlag_set); /* Reserved bits */ } /* check header */ assert(frameHeaderSize > 5); #ifndef FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION { BYTE const HC = LZ4F_headerChecksum(srcPtr+4, frameHeaderSize-5); RETURN_ERROR_IF(HC != srcPtr[frameHeaderSize-1], headerChecksum_invalid); } #endif /* save */ dctx->frameInfo.blockMode = (LZ4F_blockMode_t)blockMode; dctx->frameInfo.blockChecksumFlag = (LZ4F_blockChecksum_t)blockChecksumFlag; dctx->frameInfo.contentChecksumFlag = (LZ4F_contentChecksum_t)contentChecksumFlag; dctx->frameInfo.blockSizeID = (LZ4F_blockSizeID_t)blockSizeID; dctx->maxBlockSize = LZ4F_getBlockSize((LZ4F_blockSizeID_t)blockSizeID); if (contentSizeFlag) { dctx->frameRemainingSize = dctx->frameInfo.contentSize = LZ4F_readLE64(srcPtr+6); } if (dictIDFlag) dctx->frameInfo.dictID = LZ4F_readLE32(srcPtr + frameHeaderSize - 5); dctx->dStage = dstage_init; return frameHeaderSize; } /*! LZ4F_headerSize() : * @return : size of frame header * or an error code, which can be tested using LZ4F_isError() */ size_t LZ4F_headerSize(const void* src, size_t srcSize) { RETURN_ERROR_IF(src == NULL, srcPtr_wrong); /* minimal srcSize to determine header size */ if (srcSize < LZ4F_MIN_SIZE_TO_KNOW_HEADER_LENGTH) RETURN_ERROR(frameHeader_incomplete); /* special case : skippable frames */ if ((LZ4F_readLE32(src) & 0xFFFFFFF0U) == LZ4F_MAGIC_SKIPPABLE_START) return 8; /* control magic number */ #ifndef FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION if (LZ4F_readLE32(src) != LZ4F_MAGICNUMBER) RETURN_ERROR(frameType_unknown); #endif /* Frame Header Size */ { BYTE const FLG = ((const BYTE*)src)[4]; U32 const contentSizeFlag = (FLG>>3) & _1BIT; U32 const dictIDFlag = FLG & _1BIT; return minFHSize + (contentSizeFlag?8:0) + (dictIDFlag?4:0); } } /*! LZ4F_getFrameInfo() : * This function extracts frame parameters (max blockSize, frame checksum, etc.). * Usage is optional. Objective is to provide relevant information for allocation purposes. * This function works in 2 situations : * - At the beginning of a new frame, in which case it will decode this information from `srcBuffer`, and start the decoding process. * Amount of input data provided must be large enough to successfully decode the frame header. * A header size is variable, but is guaranteed to be <= LZ4F_HEADER_SIZE_MAX bytes. It's possible to provide more input data than this minimum. * - After decoding has been started. In which case, no input is read, frame parameters are extracted from dctx. * The number of bytes consumed from srcBuffer will be updated within *srcSizePtr (necessarily <= original value). * Decompression must resume from (srcBuffer + *srcSizePtr). * @return : an hint about how many srcSize bytes LZ4F_decompress() expects for next call, * or an error code which can be tested using LZ4F_isError() * note 1 : in case of error, dctx is not modified. Decoding operations can resume from where they stopped. * note 2 : frame parameters are *copied into* an already allocated LZ4F_frameInfo_t structure. */ LZ4F_errorCode_t LZ4F_getFrameInfo(LZ4F_dctx* dctx, LZ4F_frameInfo_t* frameInfoPtr, const void* srcBuffer, size_t* srcSizePtr) { LZ4F_STATIC_ASSERT(dstage_getFrameHeader < dstage_storeFrameHeader); if (dctx->dStage > dstage_storeFrameHeader) { /* frameInfo already decoded */ size_t o=0, i=0; *srcSizePtr = 0; *frameInfoPtr = dctx->frameInfo; /* returns : recommended nb of bytes for LZ4F_decompress() */ return LZ4F_decompress(dctx, NULL, &o, NULL, &i, NULL); } else { if (dctx->dStage == dstage_storeFrameHeader) { /* frame decoding already started, in the middle of header => automatic fail */ *srcSizePtr = 0; RETURN_ERROR(frameDecoding_alreadyStarted); } else { size_t const hSize = LZ4F_headerSize(srcBuffer, *srcSizePtr); if (LZ4F_isError(hSize)) { *srcSizePtr=0; return hSize; } if (*srcSizePtr < hSize) { *srcSizePtr=0; RETURN_ERROR(frameHeader_incomplete); } { size_t decodeResult = LZ4F_decodeHeader(dctx, srcBuffer, hSize); if (LZ4F_isError(decodeResult)) { *srcSizePtr = 0; } else { *srcSizePtr = decodeResult; decodeResult = BHSize; /* block header size */ } *frameInfoPtr = dctx->frameInfo; return decodeResult; } } } } /* LZ4F_updateDict() : * only used for LZ4F_blockLinked mode * Condition : @dstPtr != NULL */ static void LZ4F_updateDict(LZ4F_dctx* dctx, const BYTE* dstPtr, size_t dstSize, const BYTE* dstBufferStart, unsigned withinTmp) { assert(dstPtr != NULL); if (dctx->dictSize==0) dctx->dict = (const BYTE*)dstPtr; /* will lead to prefix mode */ assert(dctx->dict != NULL); if (dctx->dict + dctx->dictSize == dstPtr) { /* prefix mode, everything within dstBuffer */ dctx->dictSize += dstSize; return; } assert(dstPtr >= dstBufferStart); if ((size_t)(dstPtr - dstBufferStart) + dstSize >= 64 KB) { /* history in dstBuffer becomes large enough to become dictionary */ dctx->dict = (const BYTE*)dstBufferStart; dctx->dictSize = (size_t)(dstPtr - dstBufferStart) + dstSize; return; } assert(dstSize < 64 KB); /* if dstSize >= 64 KB, dictionary would be set into dstBuffer directly */ /* dstBuffer does not contain whole useful history (64 KB), so it must be saved within tmpOutBuffer */ assert(dctx->tmpOutBuffer != NULL); if (withinTmp && (dctx->dict == dctx->tmpOutBuffer)) { /* continue history within tmpOutBuffer */ /* withinTmp expectation : content of [dstPtr,dstSize] is same as [dict+dictSize,dstSize], so we just extend it */ assert(dctx->dict + dctx->dictSize == dctx->tmpOut + dctx->tmpOutStart); dctx->dictSize += dstSize; return; } if (withinTmp) { /* copy relevant dict portion in front of tmpOut within tmpOutBuffer */ size_t const preserveSize = (size_t)(dctx->tmpOut - dctx->tmpOutBuffer); size_t copySize = 64 KB - dctx->tmpOutSize; const BYTE* const oldDictEnd = dctx->dict + dctx->dictSize - dctx->tmpOutStart; if (dctx->tmpOutSize > 64 KB) copySize = 0; if (copySize > preserveSize) copySize = preserveSize; memcpy(dctx->tmpOutBuffer + preserveSize - copySize, oldDictEnd - copySize, copySize); dctx->dict = dctx->tmpOutBuffer; dctx->dictSize = preserveSize + dctx->tmpOutStart + dstSize; return; } if (dctx->dict == dctx->tmpOutBuffer) { /* copy dst into tmp to complete dict */ if (dctx->dictSize + dstSize > dctx->maxBufferSize) { /* tmp buffer not large enough */ size_t const preserveSize = 64 KB - dstSize; memcpy(dctx->tmpOutBuffer, dctx->dict + dctx->dictSize - preserveSize, preserveSize); dctx->dictSize = preserveSize; } memcpy(dctx->tmpOutBuffer + dctx->dictSize, dstPtr, dstSize); dctx->dictSize += dstSize; return; } /* join dict & dest into tmp */ { size_t preserveSize = 64 KB - dstSize; if (preserveSize > dctx->dictSize) preserveSize = dctx->dictSize; memcpy(dctx->tmpOutBuffer, dctx->dict + dctx->dictSize - preserveSize, preserveSize); memcpy(dctx->tmpOutBuffer + preserveSize, dstPtr, dstSize); dctx->dict = dctx->tmpOutBuffer; dctx->dictSize = preserveSize + dstSize; } } /*! LZ4F_decompress() : * Call this function repetitively to regenerate compressed data in srcBuffer. * The function will attempt to decode up to *srcSizePtr bytes from srcBuffer * into dstBuffer of capacity *dstSizePtr. * * The number of bytes regenerated into dstBuffer will be provided within *dstSizePtr (necessarily <= original value). * * The number of bytes effectively read from srcBuffer will be provided within *srcSizePtr (necessarily <= original value). * If number of bytes read is < number of bytes provided, then decompression operation is not complete. * Remaining data will have to be presented again in a subsequent invocation. * * The function result is an hint of the better srcSize to use for next call to LZ4F_decompress. * Schematically, it's the size of the current (or remaining) compressed block + header of next block. * Respecting the hint provides a small boost to performance, since it allows less buffer shuffling. * Note that this is just a hint, and it's always possible to any srcSize value. * When a frame is fully decoded, @return will be 0. * If decompression failed, @return is an error code which can be tested using LZ4F_isError(). */ size_t LZ4F_decompress(LZ4F_dctx* dctx, void* dstBuffer, size_t* dstSizePtr, const void* srcBuffer, size_t* srcSizePtr, const LZ4F_decompressOptions_t* decompressOptionsPtr) { LZ4F_decompressOptions_t optionsNull; const BYTE* const srcStart = (const BYTE*)srcBuffer; const BYTE* const srcEnd = srcStart + *srcSizePtr; const BYTE* srcPtr = srcStart; BYTE* const dstStart = (BYTE*)dstBuffer; BYTE* const dstEnd = dstStart ? dstStart + *dstSizePtr : NULL; BYTE* dstPtr = dstStart; const BYTE* selectedIn = NULL; unsigned doAnotherStage = 1; size_t nextSrcSizeHint = 1; DEBUGLOG(5, "LZ4F_decompress: src[%p](%u) => dst[%p](%u)", srcBuffer, (unsigned)*srcSizePtr, dstBuffer, (unsigned)*dstSizePtr); if (dstBuffer == NULL) assert(*dstSizePtr == 0); MEM_INIT(&optionsNull, 0, sizeof(optionsNull)); if (decompressOptionsPtr==NULL) decompressOptionsPtr = &optionsNull; *srcSizePtr = 0; *dstSizePtr = 0; assert(dctx != NULL); dctx->skipChecksum |= (decompressOptionsPtr->skipChecksums != 0); /* once set, disable for the remainder of the frame */ /* behaves as a state machine */ while (doAnotherStage) { switch(dctx->dStage) { case dstage_getFrameHeader: DEBUGLOG(6, "dstage_getFrameHeader"); if ((size_t)(srcEnd-srcPtr) >= maxFHSize) { /* enough to decode - shortcut */ size_t const hSize = LZ4F_decodeHeader(dctx, srcPtr, (size_t)(srcEnd-srcPtr)); /* will update dStage appropriately */ FORWARD_IF_ERROR(hSize); srcPtr += hSize; break; } dctx->tmpInSize = 0; if (srcEnd-srcPtr == 0) return minFHSize; /* 0-size input */ dctx->tmpInTarget = minFHSize; /* minimum size to decode header */ dctx->dStage = dstage_storeFrameHeader; /* fall-through */ case dstage_storeFrameHeader: DEBUGLOG(6, "dstage_storeFrameHeader"); { size_t const sizeToCopy = MIN(dctx->tmpInTarget - dctx->tmpInSize, (size_t)(srcEnd - srcPtr)); memcpy(dctx->header + dctx->tmpInSize, srcPtr, sizeToCopy); dctx->tmpInSize += sizeToCopy; srcPtr += sizeToCopy; } if (dctx->tmpInSize < dctx->tmpInTarget) { nextSrcSizeHint = (dctx->tmpInTarget - dctx->tmpInSize) + BHSize; /* rest of header + nextBlockHeader */ doAnotherStage = 0; /* not enough src data, ask for some more */ break; } FORWARD_IF_ERROR( LZ4F_decodeHeader(dctx, dctx->header, dctx->tmpInTarget) ); /* will update dStage appropriately */ break; case dstage_init: DEBUGLOG(6, "dstage_init"); if (dctx->frameInfo.contentChecksumFlag) (void)XXH32_reset(&(dctx->xxh), 0); /* internal buffers allocation */ { size_t const bufferNeeded = dctx->maxBlockSize + ((dctx->frameInfo.blockMode==LZ4F_blockLinked) ? 128 KB : 0); if (bufferNeeded > dctx->maxBufferSize) { /* tmp buffers too small */ dctx->maxBufferSize = 0; /* ensure allocation will be re-attempted on next entry*/ LZ4F_free(dctx->tmpIn, dctx->cmem); dctx->tmpIn = (BYTE*)LZ4F_malloc(dctx->maxBlockSize + BFSize /* block checksum */, dctx->cmem); RETURN_ERROR_IF(dctx->tmpIn == NULL, allocation_failed); LZ4F_free(dctx->tmpOutBuffer, dctx->cmem); dctx->tmpOutBuffer= (BYTE*)LZ4F_malloc(bufferNeeded, dctx->cmem); RETURN_ERROR_IF(dctx->tmpOutBuffer== NULL, allocation_failed); dctx->maxBufferSize = bufferNeeded; } } dctx->tmpInSize = 0; dctx->tmpInTarget = 0; dctx->tmpOut = dctx->tmpOutBuffer; dctx->tmpOutStart = 0; dctx->tmpOutSize = 0; dctx->dStage = dstage_getBlockHeader; /* fall-through */ case dstage_getBlockHeader: if ((size_t)(srcEnd - srcPtr) >= BHSize) { selectedIn = srcPtr; srcPtr += BHSize; } else { /* not enough input to read cBlockSize field */ dctx->tmpInSize = 0; dctx->dStage = dstage_storeBlockHeader; } if (dctx->dStage == dstage_storeBlockHeader) /* can be skipped */ case dstage_storeBlockHeader: { size_t const remainingInput = (size_t)(srcEnd - srcPtr); size_t const wantedData = BHSize - dctx->tmpInSize; size_t const sizeToCopy = MIN(wantedData, remainingInput); memcpy(dctx->tmpIn + dctx->tmpInSize, srcPtr, sizeToCopy); srcPtr += sizeToCopy; dctx->tmpInSize += sizeToCopy; if (dctx->tmpInSize < BHSize) { /* not enough input for cBlockSize */ nextSrcSizeHint = BHSize - dctx->tmpInSize; doAnotherStage = 0; break; } selectedIn = dctx->tmpIn; } /* if (dctx->dStage == dstage_storeBlockHeader) */ /* decode block header */ { U32 const blockHeader = LZ4F_readLE32(selectedIn); size_t const nextCBlockSize = blockHeader & 0x7FFFFFFFU; size_t const crcSize = dctx->frameInfo.blockChecksumFlag * BFSize; if (blockHeader==0) { /* frameEnd signal, no more block */ DEBUGLOG(5, "end of frame"); dctx->dStage = dstage_getSuffix; break; } if (nextCBlockSize > dctx->maxBlockSize) { RETURN_ERROR(maxBlockSize_invalid); } if (blockHeader & LZ4F_BLOCKUNCOMPRESSED_FLAG) { /* next block is uncompressed */ dctx->tmpInTarget = nextCBlockSize; DEBUGLOG(5, "next block is uncompressed (size %u)", (U32)nextCBlockSize); if (dctx->frameInfo.blockChecksumFlag) { (void)XXH32_reset(&dctx->blockChecksum, 0); } dctx->dStage = dstage_copyDirect; break; } /* next block is a compressed block */ dctx->tmpInTarget = nextCBlockSize + crcSize; dctx->dStage = dstage_getCBlock; if (dstPtr==dstEnd || srcPtr==srcEnd) { nextSrcSizeHint = BHSize + nextCBlockSize + crcSize; doAnotherStage = 0; } break; } case dstage_copyDirect: /* uncompressed block */ DEBUGLOG(6, "dstage_copyDirect"); { size_t sizeToCopy; if (dstPtr == NULL) { sizeToCopy = 0; } else { size_t const minBuffSize = MIN((size_t)(srcEnd-srcPtr), (size_t)(dstEnd-dstPtr)); sizeToCopy = MIN(dctx->tmpInTarget, minBuffSize); memcpy(dstPtr, srcPtr, sizeToCopy); if (!dctx->skipChecksum) { if (dctx->frameInfo.blockChecksumFlag) { (void)XXH32_update(&dctx->blockChecksum, srcPtr, sizeToCopy); } if (dctx->frameInfo.contentChecksumFlag) (void)XXH32_update(&dctx->xxh, srcPtr, sizeToCopy); } if (dctx->frameInfo.contentSize) dctx->frameRemainingSize -= sizeToCopy; /* history management (linked blocks only)*/ if (dctx->frameInfo.blockMode == LZ4F_blockLinked) { LZ4F_updateDict(dctx, dstPtr, sizeToCopy, dstStart, 0); } srcPtr += sizeToCopy; dstPtr += sizeToCopy; } if (sizeToCopy == dctx->tmpInTarget) { /* all done */ if (dctx->frameInfo.blockChecksumFlag) { dctx->tmpInSize = 0; dctx->dStage = dstage_getBlockChecksum; } else dctx->dStage = dstage_getBlockHeader; /* new block */ break; } dctx->tmpInTarget -= sizeToCopy; /* need to copy more */ } nextSrcSizeHint = dctx->tmpInTarget + +(dctx->frameInfo.blockChecksumFlag ? BFSize : 0) + BHSize /* next header size */; doAnotherStage = 0; break; /* check block checksum for recently transferred uncompressed block */ case dstage_getBlockChecksum: DEBUGLOG(6, "dstage_getBlockChecksum"); { const void* crcSrc; if ((srcEnd-srcPtr >= 4) && (dctx->tmpInSize==0)) { crcSrc = srcPtr; srcPtr += 4; } else { size_t const stillToCopy = 4 - dctx->tmpInSize; size_t const sizeToCopy = MIN(stillToCopy, (size_t)(srcEnd-srcPtr)); memcpy(dctx->header + dctx->tmpInSize, srcPtr, sizeToCopy); dctx->tmpInSize += sizeToCopy; srcPtr += sizeToCopy; if (dctx->tmpInSize < 4) { /* all input consumed */ doAnotherStage = 0; break; } crcSrc = dctx->header; } if (!dctx->skipChecksum) { U32 const readCRC = LZ4F_readLE32(crcSrc); U32 const calcCRC = XXH32_digest(&dctx->blockChecksum); #ifndef FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION DEBUGLOG(6, "compare block checksum"); if (readCRC != calcCRC) { DEBUGLOG(4, "incorrect block checksum: %08X != %08X", readCRC, calcCRC); RETURN_ERROR(blockChecksum_invalid); } #else (void)readCRC; (void)calcCRC; #endif } } dctx->dStage = dstage_getBlockHeader; /* new block */ break; case dstage_getCBlock: DEBUGLOG(6, "dstage_getCBlock"); if ((size_t)(srcEnd-srcPtr) < dctx->tmpInTarget) { dctx->tmpInSize = 0; dctx->dStage = dstage_storeCBlock; break; } /* input large enough to read full block directly */ selectedIn = srcPtr; srcPtr += dctx->tmpInTarget; if (0) /* always jump over next block */ case dstage_storeCBlock: { size_t const wantedData = dctx->tmpInTarget - dctx->tmpInSize; size_t const inputLeft = (size_t)(srcEnd-srcPtr); size_t const sizeToCopy = MIN(wantedData, inputLeft); memcpy(dctx->tmpIn + dctx->tmpInSize, srcPtr, sizeToCopy); dctx->tmpInSize += sizeToCopy; srcPtr += sizeToCopy; if (dctx->tmpInSize < dctx->tmpInTarget) { /* need more input */ nextSrcSizeHint = (dctx->tmpInTarget - dctx->tmpInSize) + (dctx->frameInfo.blockChecksumFlag ? BFSize : 0) + BHSize /* next header size */; doAnotherStage = 0; break; } selectedIn = dctx->tmpIn; } /* At this stage, input is large enough to decode a block */ /* First, decode and control block checksum if it exists */ if (dctx->frameInfo.blockChecksumFlag) { assert(dctx->tmpInTarget >= 4); dctx->tmpInTarget -= 4; assert(selectedIn != NULL); /* selectedIn is defined at this stage (either srcPtr, or dctx->tmpIn) */ { U32 const readBlockCrc = LZ4F_readLE32(selectedIn + dctx->tmpInTarget); U32 const calcBlockCrc = XXH32(selectedIn, dctx->tmpInTarget, 0); #ifndef FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION RETURN_ERROR_IF(readBlockCrc != calcBlockCrc, blockChecksum_invalid); #else (void)readBlockCrc; (void)calcBlockCrc; #endif } } /* decode directly into destination buffer if there is enough room */ if ( ((size_t)(dstEnd-dstPtr) >= dctx->maxBlockSize) /* unless the dictionary is stored in tmpOut: * in which case it's faster to decode within tmpOut * to benefit from prefix speedup */ && !(dctx->dict!= NULL && (const BYTE*)dctx->dict + dctx->dictSize == dctx->tmpOut) ) { const char* dict = (const char*)dctx->dict; size_t dictSize = dctx->dictSize; int decodedSize; assert(dstPtr != NULL); if (dict && dictSize > 1 GB) { /* overflow control : dctx->dictSize is an int, avoid truncation / sign issues */ dict += dictSize - 64 KB; dictSize = 64 KB; } decodedSize = LZ4_decompress_safe_usingDict( (const char*)selectedIn, (char*)dstPtr, (int)dctx->tmpInTarget, (int)dctx->maxBlockSize, dict, (int)dictSize); RETURN_ERROR_IF(decodedSize < 0, decompressionFailed); if ((dctx->frameInfo.contentChecksumFlag) && (!dctx->skipChecksum)) XXH32_update(&(dctx->xxh), dstPtr, (size_t)decodedSize); if (dctx->frameInfo.contentSize) dctx->frameRemainingSize -= (size_t)decodedSize; /* dictionary management */ if (dctx->frameInfo.blockMode==LZ4F_blockLinked) { LZ4F_updateDict(dctx, dstPtr, (size_t)decodedSize, dstStart, 0); } dstPtr += decodedSize; dctx->dStage = dstage_getBlockHeader; /* end of block, let's get another one */ break; } /* not enough place into dst : decode into tmpOut */ /* manage dictionary */ if (dctx->frameInfo.blockMode == LZ4F_blockLinked) { if (dctx->dict == dctx->tmpOutBuffer) { /* truncate dictionary to 64 KB if too big */ if (dctx->dictSize > 128 KB) { memcpy(dctx->tmpOutBuffer, dctx->dict + dctx->dictSize - 64 KB, 64 KB); dctx->dictSize = 64 KB; } dctx->tmpOut = dctx->tmpOutBuffer + dctx->dictSize; } else { /* dict not within tmpOut */ size_t const reservedDictSpace = MIN(dctx->dictSize, 64 KB); dctx->tmpOut = dctx->tmpOutBuffer + reservedDictSpace; } } /* Decode block into tmpOut */ { const char* dict = (const char*)dctx->dict; size_t dictSize = dctx->dictSize; int decodedSize; if (dict && dictSize > 1 GB) { /* the dictSize param is an int, avoid truncation / sign issues */ dict += dictSize - 64 KB; dictSize = 64 KB; } decodedSize = LZ4_decompress_safe_usingDict( (const char*)selectedIn, (char*)dctx->tmpOut, (int)dctx->tmpInTarget, (int)dctx->maxBlockSize, dict, (int)dictSize); RETURN_ERROR_IF(decodedSize < 0, decompressionFailed); if (dctx->frameInfo.contentChecksumFlag && !dctx->skipChecksum) XXH32_update(&(dctx->xxh), dctx->tmpOut, (size_t)decodedSize); if (dctx->frameInfo.contentSize) dctx->frameRemainingSize -= (size_t)decodedSize; dctx->tmpOutSize = (size_t)decodedSize; dctx->tmpOutStart = 0; dctx->dStage = dstage_flushOut; } /* fall-through */ case dstage_flushOut: /* flush decoded data from tmpOut to dstBuffer */ DEBUGLOG(6, "dstage_flushOut"); if (dstPtr != NULL) { size_t const sizeToCopy = MIN(dctx->tmpOutSize - dctx->tmpOutStart, (size_t)(dstEnd-dstPtr)); memcpy(dstPtr, dctx->tmpOut + dctx->tmpOutStart, sizeToCopy); /* dictionary management */ if (dctx->frameInfo.blockMode == LZ4F_blockLinked) LZ4F_updateDict(dctx, dstPtr, sizeToCopy, dstStart, 1 /*withinTmp*/); dctx->tmpOutStart += sizeToCopy; dstPtr += sizeToCopy; } if (dctx->tmpOutStart == dctx->tmpOutSize) { /* all flushed */ dctx->dStage = dstage_getBlockHeader; /* get next block */ break; } /* could not flush everything : stop there, just request a block header */ doAnotherStage = 0; nextSrcSizeHint = BHSize; break; case dstage_getSuffix: RETURN_ERROR_IF(dctx->frameRemainingSize, frameSize_wrong); /* incorrect frame size decoded */ if (!dctx->frameInfo.contentChecksumFlag) { /* no checksum, frame is completed */ nextSrcSizeHint = 0; LZ4F_resetDecompressionContext(dctx); doAnotherStage = 0; break; } if ((srcEnd - srcPtr) < 4) { /* not enough size for entire CRC */ dctx->tmpInSize = 0; dctx->dStage = dstage_storeSuffix; } else { selectedIn = srcPtr; srcPtr += 4; } if (dctx->dStage == dstage_storeSuffix) /* can be skipped */ case dstage_storeSuffix: { size_t const remainingInput = (size_t)(srcEnd - srcPtr); size_t const wantedData = 4 - dctx->tmpInSize; size_t const sizeToCopy = MIN(wantedData, remainingInput); memcpy(dctx->tmpIn + dctx->tmpInSize, srcPtr, sizeToCopy); srcPtr += sizeToCopy; dctx->tmpInSize += sizeToCopy; if (dctx->tmpInSize < 4) { /* not enough input to read complete suffix */ nextSrcSizeHint = 4 - dctx->tmpInSize; doAnotherStage=0; break; } selectedIn = dctx->tmpIn; } /* if (dctx->dStage == dstage_storeSuffix) */ /* case dstage_checkSuffix: */ /* no direct entry, avoid initialization risks */ if (!dctx->skipChecksum) { U32 const readCRC = LZ4F_readLE32(selectedIn); U32 const resultCRC = XXH32_digest(&(dctx->xxh)); DEBUGLOG(4, "frame checksum: stored 0x%0X vs 0x%0X processed", readCRC, resultCRC); #ifndef FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION RETURN_ERROR_IF(readCRC != resultCRC, contentChecksum_invalid); #else (void)readCRC; (void)resultCRC; #endif } nextSrcSizeHint = 0; LZ4F_resetDecompressionContext(dctx); doAnotherStage = 0; break; case dstage_getSFrameSize: if ((srcEnd - srcPtr) >= 4) { selectedIn = srcPtr; srcPtr += 4; } else { /* not enough input to read cBlockSize field */ dctx->tmpInSize = 4; dctx->tmpInTarget = 8; dctx->dStage = dstage_storeSFrameSize; } if (dctx->dStage == dstage_storeSFrameSize) case dstage_storeSFrameSize: { size_t const sizeToCopy = MIN(dctx->tmpInTarget - dctx->tmpInSize, (size_t)(srcEnd - srcPtr) ); memcpy(dctx->header + dctx->tmpInSize, srcPtr, sizeToCopy); srcPtr += sizeToCopy; dctx->tmpInSize += sizeToCopy; if (dctx->tmpInSize < dctx->tmpInTarget) { /* not enough input to get full sBlockSize; wait for more */ nextSrcSizeHint = dctx->tmpInTarget - dctx->tmpInSize; doAnotherStage = 0; break; } selectedIn = dctx->header + 4; } /* if (dctx->dStage == dstage_storeSFrameSize) */ /* case dstage_decodeSFrameSize: */ /* no direct entry */ { size_t const SFrameSize = LZ4F_readLE32(selectedIn); dctx->frameInfo.contentSize = SFrameSize; dctx->tmpInTarget = SFrameSize; dctx->dStage = dstage_skipSkippable; break; } case dstage_skipSkippable: { size_t const skipSize = MIN(dctx->tmpInTarget, (size_t)(srcEnd-srcPtr)); srcPtr += skipSize; dctx->tmpInTarget -= skipSize; doAnotherStage = 0; nextSrcSizeHint = dctx->tmpInTarget; if (nextSrcSizeHint) break; /* still more to skip */ /* frame fully skipped : prepare context for a new frame */ LZ4F_resetDecompressionContext(dctx); break; } } /* switch (dctx->dStage) */ } /* while (doAnotherStage) */ /* preserve history within tmpOut whenever necessary */ LZ4F_STATIC_ASSERT((unsigned)dstage_init == 2); if ( (dctx->frameInfo.blockMode==LZ4F_blockLinked) /* next block will use up to 64KB from previous ones */ && (dctx->dict != dctx->tmpOutBuffer) /* dictionary is not already within tmp */ && (dctx->dict != NULL) /* dictionary exists */ && (!decompressOptionsPtr->stableDst) /* cannot rely on dst data to remain there for next call */ && ((unsigned)(dctx->dStage)-2 < (unsigned)(dstage_getSuffix)-2) ) /* valid stages : [init ... getSuffix[ */ { if (dctx->dStage == dstage_flushOut) { size_t const preserveSize = (size_t)(dctx->tmpOut - dctx->tmpOutBuffer); size_t copySize = 64 KB - dctx->tmpOutSize; const BYTE* oldDictEnd = dctx->dict + dctx->dictSize - dctx->tmpOutStart; if (dctx->tmpOutSize > 64 KB) copySize = 0; if (copySize > preserveSize) copySize = preserveSize; assert(dctx->tmpOutBuffer != NULL); memcpy(dctx->tmpOutBuffer + preserveSize - copySize, oldDictEnd - copySize, copySize); dctx->dict = dctx->tmpOutBuffer; dctx->dictSize = preserveSize + dctx->tmpOutStart; } else { const BYTE* const oldDictEnd = dctx->dict + dctx->dictSize; size_t const newDictSize = MIN(dctx->dictSize, 64 KB); memcpy(dctx->tmpOutBuffer, oldDictEnd - newDictSize, newDictSize); dctx->dict = dctx->tmpOutBuffer; dctx->dictSize = newDictSize; dctx->tmpOut = dctx->tmpOutBuffer + newDictSize; } } *srcSizePtr = (size_t)(srcPtr - srcStart); *dstSizePtr = (size_t)(dstPtr - dstStart); return nextSrcSizeHint; } /*! LZ4F_decompress_usingDict() : * Same as LZ4F_decompress(), using a predefined dictionary. * Dictionary is used "in place", without any preprocessing. * It must remain accessible throughout the entire frame decoding. */ size_t LZ4F_decompress_usingDict(LZ4F_dctx* dctx, void* dstBuffer, size_t* dstSizePtr, const void* srcBuffer, size_t* srcSizePtr, const void* dict, size_t dictSize, const LZ4F_decompressOptions_t* decompressOptionsPtr) { if (dctx->dStage <= dstage_init) { dctx->dict = (const BYTE*)dict; dctx->dictSize = dictSize; } return LZ4F_decompress(dctx, dstBuffer, dstSizePtr, srcBuffer, srcSizePtr, decompressOptionsPtr); }