/* bench.c - Demo program to benchmark open-source compression algorithms Copyright (C) Yann Collet 2012-2020 GPL v2 License This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. You can contact the author at : - LZ4 homepage : http://www.lz4.org - LZ4 source repository : https://github.com/lz4/lz4 */ /*-************************************ * Compiler options **************************************/ #ifdef _MSC_VER /* Visual Studio */ # pragma warning(disable : 4127) /* disable: C4127: conditional expression is constant */ #endif /* ************************************* * Includes ***************************************/ #include "platform.h" /* Compiler options */ #include "util.h" /* UTIL_GetFileSize, UTIL_sleep */ #include /* malloc, free */ #include /* memset */ #include /* fprintf, fopen, ftello */ #include /* clock_t, clock, CLOCKS_PER_SEC */ #include /* assert */ #include "lorem.h" /* LOREM_genBuffer */ #include "xxhash.h" #include "bench.h" #include "timefn.h" #define LZ4_STATIC_LINKING_ONLY #include "lz4.h" #define LZ4_HC_STATIC_LINKING_ONLY #include "lz4hc.h" #include "lz4frame.h" /* LZ4F_decompress */ /* ************************************* * Constants ***************************************/ #ifndef LZ4_GIT_COMMIT_STRING # define LZ4_GIT_COMMIT_STRING "" #else # define LZ4_GIT_COMMIT_STRING LZ4_EXPAND_AND_QUOTE(LZ4_GIT_COMMIT) #endif #define NBSECONDS 3 #define TIMELOOP_MICROSEC 1*1000000ULL /* 1 second */ #define TIMELOOP_NANOSEC 1*1000000000ULL /* 1 second */ #define ACTIVEPERIOD_NANOSEC 70*1000000000ULL /* 70 seconds */ #define COOLPERIOD_SEC 10 #define DECOMP_MULT 1 /* test decompression DECOMP_MULT times longer than compression */ #define KB *(1 <<10) #define MB *(1 <<20) #define GB *(1U<<30) #define LZ4_MAX_DICT_SIZE (64 KB) static const size_t maxMemory = (sizeof(size_t)==4) ? (2 GB - 64 MB) : (size_t)(1ULL << ((sizeof(size_t)*8)-31)); /* ************************************* * console display ***************************************/ #define DISPLAYOUT(...) fprintf(stdout, __VA_ARGS__) #define OUTLEVEL(l, ...) if (g_displayLevel>=(l)) { DISPLAYOUT(__VA_ARGS__); } #define DISPLAY(...) fprintf(stderr, __VA_ARGS__) #define DISPLAYLEVEL(l, ...) if (g_displayLevel>=(l)) { DISPLAY(__VA_ARGS__); } static U32 g_displayLevel = 2; /* 0 : no display; 1: errors; 2 : + result + interaction + warnings; 3 : + progression; 4 : + information */ #define DISPLAYUPDATE(l, ...) if (g_displayLevel>=l) { \ if ((clock() - g_time > refreshRate) || (g_displayLevel>=4)) \ { g_time = clock(); DISPLAY(__VA_ARGS__); \ if (g_displayLevel>=4) fflush(stdout); } } static const clock_t refreshRate = CLOCKS_PER_SEC * 15 / 100; static clock_t g_time = 0; /* ************************************* * DEBUG and error conditions ***************************************/ #ifndef DEBUG # define DEBUG 0 #endif #define DEBUGOUTPUT(...) if (DEBUG) DISPLAY(__VA_ARGS__); #define END_PROCESS(error, ...) \ do { \ DEBUGOUTPUT("Error defined at %s, line %i : \n", __FILE__, __LINE__); \ DISPLAYLEVEL(1, "Error %i : ", error); \ DISPLAYLEVEL(1, __VA_ARGS__); \ DISPLAYLEVEL(1, "\n"); \ exit(error); \ } while (0) #define LZ4_isError(errcode) (errcode==0) /* ************************************* * Benchmark Parameters ***************************************/ static U32 g_nbSeconds = NBSECONDS; static size_t g_blockSize = 0; int g_additionalParam = 0; int g_benchSeparately = 0; int g_decodeOnly = 0; unsigned g_skipChecksums = 0; void BMK_setNotificationLevel(unsigned level) { g_displayLevel=level; } void BMK_setAdditionalParam(int additionalParam) { g_additionalParam=additionalParam; } void BMK_setNbSeconds(unsigned nbSeconds) { g_nbSeconds = nbSeconds; DISPLAYLEVEL(3, "- test >= %u seconds per compression / decompression -\n", g_nbSeconds); } void BMK_setBlockSize(size_t blockSize) { g_blockSize = blockSize; } void BMK_setBenchSeparately(int separate) { g_benchSeparately = (separate!=0); } void BMK_setDecodeOnlyMode(int set) { g_decodeOnly = (set!=0); } void BMK_skipChecksums(int skip) { g_skipChecksums = (skip!=0); } /* ************************************* * Compression state management ***************************************/ struct compressionParameters { int cLevel; const char* dictBuf; int dictSize; LZ4_stream_t* LZ4_stream; LZ4_stream_t* LZ4_dictStream; LZ4_streamHC_t* LZ4_streamHC; LZ4_streamHC_t* LZ4_dictStreamHC; void (*initFunction)( struct compressionParameters* pThis); void (*resetFunction)( const struct compressionParameters* pThis); int (*blockFunction)( const struct compressionParameters* pThis, const char* src, char* dst, int srcSize, int dstSize); void (*cleanupFunction)( const struct compressionParameters* pThis); }; static void LZ4_compressInitNoStream(struct compressionParameters* pThis) { pThis->LZ4_stream = NULL; pThis->LZ4_dictStream = NULL; pThis->LZ4_streamHC = NULL; pThis->LZ4_dictStreamHC = NULL; } static void LZ4_compressInitStream(struct compressionParameters* pThis) { pThis->LZ4_stream = LZ4_createStream(); pThis->LZ4_dictStream = LZ4_createStream(); pThis->LZ4_streamHC = NULL; pThis->LZ4_dictStreamHC = NULL; LZ4_loadDictSlow(pThis->LZ4_dictStream, pThis->dictBuf, pThis->dictSize); } static void LZ4_compressInitStreamHC(struct compressionParameters* pThis) { pThis->LZ4_stream = NULL; pThis->LZ4_dictStream = NULL; pThis->LZ4_streamHC = LZ4_createStreamHC(); pThis->LZ4_dictStreamHC = LZ4_createStreamHC(); LZ4_resetStreamHC_fast(pThis->LZ4_dictStreamHC, pThis->cLevel); LZ4_loadDictHC(pThis->LZ4_dictStreamHC, pThis->dictBuf, pThis->dictSize); } static void LZ4_compressResetNoStream(const struct compressionParameters* cparams) { (void)cparams; } static void LZ4_compressResetStream(const struct compressionParameters* cparams) { LZ4_resetStream_fast(cparams->LZ4_stream); LZ4_attach_dictionary(cparams->LZ4_stream, cparams->LZ4_dictStream); } static void LZ4_compressResetStreamHC(const struct compressionParameters* cparams) { LZ4_resetStreamHC_fast(cparams->LZ4_streamHC, cparams->cLevel); LZ4_attach_HC_dictionary(cparams->LZ4_streamHC, cparams->LZ4_dictStreamHC); } static int LZ4_compressBlockNoStream(const struct compressionParameters* cparams, const char* src, char* dst, int srcSize, int dstSize) { int const acceleration = (cparams->cLevel < 0) ? -cparams->cLevel + 1 : 1; return LZ4_compress_fast(src, dst, srcSize, dstSize, acceleration); } static int LZ4_compressBlockNoStreamHC(const struct compressionParameters* cparams, const char* src, char* dst, int srcSize, int dstSize) { return LZ4_compress_HC(src, dst, srcSize, dstSize, cparams->cLevel); } static int LZ4_compressBlockStream(const struct compressionParameters* cparams, const char* src, char* dst, int srcSize, int dstSize) { int const acceleration = (cparams->cLevel < 0) ? -cparams->cLevel + 1 : 1; LZ4_compressResetStream(cparams); return LZ4_compress_fast_continue(cparams->LZ4_stream, src, dst, srcSize, dstSize, acceleration); } static int LZ4_compressBlockStreamHC(const struct compressionParameters* cparams, const char* src, char* dst, int srcSize, int dstSize) { LZ4_compressResetStreamHC(cparams); return LZ4_compress_HC_continue(cparams->LZ4_streamHC, src, dst, srcSize, dstSize); } static void LZ4_compressCleanupNoStream(const struct compressionParameters* cparams) { (void)cparams; } static void LZ4_compressCleanupStream(const struct compressionParameters* cparams) { LZ4_freeStream(cparams->LZ4_stream); LZ4_freeStream(cparams->LZ4_dictStream); } static void LZ4_compressCleanupStreamHC(const struct compressionParameters* cparams) { LZ4_freeStreamHC(cparams->LZ4_streamHC); LZ4_freeStreamHC(cparams->LZ4_dictStreamHC); } static void LZ4_buildCompressionParameters(struct compressionParameters* pParams, int cLevel, const char* dictBuf, int dictSize) { pParams->cLevel = cLevel; pParams->dictBuf = dictBuf; pParams->dictSize = dictSize; if (dictSize) { if (cLevel < LZ4HC_CLEVEL_MIN) { pParams->initFunction = LZ4_compressInitStream; pParams->resetFunction = LZ4_compressResetStream; pParams->blockFunction = LZ4_compressBlockStream; pParams->cleanupFunction = LZ4_compressCleanupStream; } else { pParams->initFunction = LZ4_compressInitStreamHC; pParams->resetFunction = LZ4_compressResetStreamHC; pParams->blockFunction = LZ4_compressBlockStreamHC; pParams->cleanupFunction = LZ4_compressCleanupStreamHC; } } else { pParams->initFunction = LZ4_compressInitNoStream; pParams->resetFunction = LZ4_compressResetNoStream; pParams->cleanupFunction = LZ4_compressCleanupNoStream; if (cLevel < LZ4HC_CLEVEL_MIN) { pParams->blockFunction = LZ4_compressBlockNoStream; } else { pParams->blockFunction = LZ4_compressBlockNoStreamHC; } } } typedef int (*DecFunction_f)(const char* src, char* dst, int srcSize, int dstCapacity, const char* dictStart, int dictSize); static LZ4F_dctx* g_dctx = NULL; static int LZ4F_decompress_binding(const char* src, char* dst, int srcSize, int dstCapacity, const char* dictStart, int dictSize) { size_t dstSize = (size_t)dstCapacity; size_t readSize = (size_t)srcSize; LZ4F_decompressOptions_t dOpt = { 1, 0, 0, 0 }; size_t decStatus; dOpt.skipChecksums = g_skipChecksums; decStatus = LZ4F_decompress(g_dctx, dst, &dstSize, src, &readSize, &dOpt); if ( (decStatus == 0) /* decompression successful */ && ((int)readSize==srcSize) /* consume all input */ ) return (int)dstSize; /* else, error */ return -1; (void)dictStart; (void)dictSize; /* not compatible with dictionary yet */ } /* ******************************************************** * Bench functions **********************************************************/ typedef struct { const char* srcPtr; size_t srcSize; char* cPtr; size_t cRoom; size_t cSize; char* resPtr; size_t resSize; } blockParam_t; #define MIN(a,b) ((a)<(b) ? (a) : (b)) #define MAX(a,b) ((a)>(b) ? (a) : (b)) static int BMK_benchMem(const void* srcBuffer, size_t srcSize, const char* displayName, int cLevel, const size_t* fileSizes, U32 nbFiles, const char* dictBuf, int dictSize) { size_t const blockSize = (g_blockSize>=32 && !g_decodeOnly ? g_blockSize : srcSize) + (!srcSize) /* avoid div by 0 */ ; U32 const maxNbBlocks = (U32)((srcSize + (blockSize-1)) / blockSize) + nbFiles; blockParam_t* const blockTable = (blockParam_t*) malloc(maxNbBlocks * sizeof(blockParam_t)); size_t const maxCompressedSize = (size_t)LZ4_compressBound((int)srcSize) + (maxNbBlocks * 1024); /* add some room for safety */ void* const compressedBuffer = malloc(maxCompressedSize); size_t const decMultiplier = g_decodeOnly ? 255 : 1; size_t const maxInSize = (size_t)LZ4_MAX_INPUT_SIZE / decMultiplier; size_t const maxDecSize = srcSize < maxInSize ? srcSize * decMultiplier : LZ4_MAX_INPUT_SIZE; void* const resultBuffer = malloc(maxDecSize); int benchError = 0; U32 nbBlocks; struct compressionParameters compP; /* checks */ if (!compressedBuffer || !resultBuffer || !blockTable) END_PROCESS(31, "allocation error : not enough memory"); if (strlen(displayName)>17) displayName += strlen(displayName)-17; /* can only display 17 characters */ /* init */ LZ4_buildCompressionParameters(&compP, cLevel, dictBuf, dictSize); compP.initFunction(&compP); if (g_dctx==NULL) { LZ4F_createDecompressionContext(&g_dctx, LZ4F_VERSION); if (g_dctx==NULL) END_PROCESS(1, "allocation error - decompression state"); } /* Init blockTable data */ { const char* srcPtr = (const char*)srcBuffer; char* cPtr = (char*)compressedBuffer; char* resPtr = (char*)resultBuffer; U32 fileNb; for (nbBlocks=0, fileNb=0; fileNb ACTIVEPERIOD_NANOSEC) { DISPLAYLEVEL(2, "\rcooling down ... \r"); UTIL_sleep(COOLPERIOD_SEC); coolTime = TIME_getTime(); } /* Compression */ DISPLAYLEVEL(2, "%2s-%-17.17s :%10u ->\r", marks[markNb], displayName, (U32)totalRSize); if (!cCompleted) { memset(compressedBuffer, 0xE5, maxCompressedSize); /* warm up and erase compressed buffer */ { U32 blockNb; for (blockNb=0; blockNb 0) { if (duration_ns < fastestC * nbCompressionLoops) fastestC = duration_ns / nbCompressionLoops; assert(fastestC > 0); nbCompressionLoops = (U32)(TIMELOOP_NANOSEC / fastestC) + 1; /* aim for ~1sec */ } else { assert(nbCompressionLoops < 40000000); /* avoid overflow */ nbCompressionLoops *= 100; } totalCTime += duration_ns; cCompleted = totalCTime>maxTime; } cSize = 0; { U32 blockNb; for (blockNb=0; blockNb%10u (%5.3f),%6.1f MB/s\r", marks[markNb], displayName, (U32)totalRSize, (U32)cSize, ratio, ((double)totalRSize / (double)fastestC) * 1000 ); fflush(NULL); } (void)fastestD; (void)crcOrig; /* unused when decompression disabled */ #if 1 /* Decompression */ if (!dCompleted) memset(resultBuffer, 0xD6, srcSize); /* warm result buffer */ UTIL_sleepMilli(5); /* give processor time to other processes */ TIME_waitForNextTick(); if (!dCompleted) { const DecFunction_f decFunction = g_decodeOnly ? LZ4F_decompress_binding : LZ4_decompress_safe_usingDict; const char* const decString = g_decodeOnly ? "LZ4F_decompress" : "LZ4_decompress_safe_usingDict"; TIME_t const timeStart = TIME_getTime(); U32 nbLoops; for (nbLoops=0; nbLoops < nbDecodeLoops; nbLoops++) { U32 blockNb; for (blockNb=0; blockNb 0) { if (duration_ns < fastestD * nbDecodeLoops) fastestD = duration_ns / nbDecodeLoops; assert(fastestD > 0); nbDecodeLoops = (U32)(TIMELOOP_NANOSEC / fastestD) + 1; /* aim for ~1sec */ } else { assert(nbDecodeLoops < 40000000); /* avoid overflow */ nbDecodeLoops *= 100; } totalDTime += duration_ns; dCompleted = totalDTime > (DECOMP_MULT*maxTime); } } if (g_decodeOnly) { unsigned u; totalRSize = 0; for (u=0; u%10u (%5.3f),%6.1f MB/s, %6.1f MB/s\r", marks[markNb], displayName, (U32)totalRSize, (U32)cSize, ratio, ((double)totalRSize / (double)fastestC) * 1000, ((double)totalRSize / (double)fastestD) * 1000); fflush(NULL); /* CRC Checking (not possible in decode-only mode)*/ if (!g_decodeOnly) { U64 const crcCheck = XXH64(resultBuffer, srcSize, 0); if (crcOrig!=crcCheck) { size_t u; DISPLAY("\n!!! WARNING !!! %17s : Invalid Checksum : %x != %x \n", displayName, (unsigned)crcOrig, (unsigned)crcCheck); benchError = 1; for (u=0; u u) break; bacc += blockTable[segNb].srcSize; } pos = (U32)(u - bacc); bNb = pos / (128 KB); DISPLAY("(block %u, sub %u, pos %u) \n", segNb, bNb, pos); break; } if (u==srcSize-1) { /* should never happen */ DISPLAY("no difference detected\n"); } } break; } } /* CRC Checking */ #endif } /* for (testNb = 1; testNb <= (g_nbSeconds + !g_nbSeconds); testNb++) */ OUTLEVEL(2, "%2i#\n", cLevel); /* quiet mode */ if (g_displayLevel == 1) { double const cSpeed = ((double)srcSize / (double)fastestC) * 1000; double const dSpeed = ((double)srcSize / (double)fastestD) * 1000; DISPLAYOUT("-%-3i%11i (%5.3f) %6.2f MB/s %6.1f MB/s %s ", cLevel, (int)cSize, ratio, cSpeed, dSpeed, displayName); if (g_additionalParam) DISPLAYOUT("(param=%d)", g_additionalParam); DISPLAYOUT("\n"); } } /* Bench */ /* clean up */ compP.cleanupFunction(&compP); free(blockTable); free(compressedBuffer); free(resultBuffer); return benchError; } static size_t BMK_findMaxMem(U64 requiredMem) { size_t step = 64 MB; BYTE* testmem=NULL; requiredMem = (((requiredMem >> 26) + 1) << 26); requiredMem += 2*step; if (requiredMem > maxMemory) requiredMem = maxMemory; while (!testmem) { if (requiredMem > step) requiredMem -= step; else requiredMem >>= 1; testmem = (BYTE*) malloc ((size_t)requiredMem); } free (testmem); /* keep some space available */ if (requiredMem > step) requiredMem -= step; else requiredMem >>= 1; return (size_t)requiredMem; } static int BMK_benchCLevel(void* srcBuffer, size_t benchedSize, const char* displayName, int cLevel, int cLevelLast, const size_t* fileSizes, unsigned nbFiles, const char* dictBuf, int dictSize) { int l; int benchError = 0; const char* pch = strrchr(displayName, '\\'); /* Windows */ if (!pch) pch = strrchr(displayName, '/'); /* Linux */ if (pch) displayName = pch+1; SET_REALTIME_PRIORITY; if (g_displayLevel == 1 && !g_additionalParam) DISPLAY("bench %s %s: input %u bytes, %u seconds, %u KB blocks\n", LZ4_VERSION_STRING, LZ4_GIT_COMMIT_STRING, (U32)benchedSize, g_nbSeconds, (U32)(g_blockSize>>10)); if (cLevelLast < cLevel) cLevelLast = cLevel; for (l=cLevel; l <= cLevelLast; l++) { benchError |= BMK_benchMem( srcBuffer, benchedSize, displayName, l, fileSizes, nbFiles, dictBuf, dictSize); } return benchError; } /*! BMK_loadFiles() : Loads `buffer` with content of files listed within `fileNamesTable`. At most, fills `buffer` entirely */ static void BMK_loadFiles(void* buffer, size_t bufferSize, size_t* fileSizes, const char** fileNamesTable, unsigned nbFiles) { size_t pos = 0, totalSize = 0; unsigned n; for (n=0; n bufferSize-pos) { /* buffer too small - stop after this file */ fileSize = bufferSize-pos; nbFiles=n; } { size_t const readSize = fread(((char*)buffer)+pos, 1, (size_t)fileSize, f); if (readSize != (size_t)fileSize) END_PROCESS(11, "could not read %s", fileNamesTable[n]); pos += readSize; } fileSizes[n] = (size_t)fileSize; totalSize += (size_t)fileSize; fclose(f); } if (totalSize == 0) END_PROCESS(12, "no data to bench"); } static int BMK_benchFileTable(const char** fileNamesTable, unsigned nbFiles, int cLevel, int cLevelLast, const char* dictBuf, int dictSize) { void* srcBuffer; size_t benchedSize; int benchError = 0; size_t* fileSizes = (size_t*)malloc(nbFiles * sizeof(size_t)); U64 const totalSizeToLoad = UTIL_getTotalFileSize(fileNamesTable, nbFiles); char mfName[20] = {0}; if (!fileSizes) END_PROCESS(12, "not enough memory for fileSizes"); /* Memory allocation & restrictions */ benchedSize = BMK_findMaxMem(totalSizeToLoad * 3) / 3; if (benchedSize==0) END_PROCESS(12, "not enough memory"); if ((U64)benchedSize > totalSizeToLoad) benchedSize = (size_t)totalSizeToLoad; if (benchedSize > LZ4_MAX_INPUT_SIZE) { benchedSize = LZ4_MAX_INPUT_SIZE; DISPLAY("File(s) bigger than LZ4's max input size; testing %u MB only...\n", (U32)(benchedSize >> 20)); } else { if (benchedSize < totalSizeToLoad) DISPLAY("Not enough memory; testing %u MB only...\n", (U32)(benchedSize >> 20)); } srcBuffer = malloc(benchedSize + !benchedSize); /* avoid alloc of zero */ if (!srcBuffer) END_PROCESS(12, "not enough memory"); /* Load input buffer */ BMK_loadFiles(srcBuffer, benchedSize, fileSizes, fileNamesTable, nbFiles); /* Bench */ snprintf (mfName, sizeof(mfName), " %u files", nbFiles); { const char* displayName = (nbFiles > 1) ? mfName : fileNamesTable[0]; benchError = BMK_benchCLevel(srcBuffer, benchedSize, displayName, cLevel, cLevelLast, fileSizes, nbFiles, dictBuf, dictSize); } /* clean up */ free(srcBuffer); free(fileSizes); return benchError; } static int BMK_syntheticTest(int cLevel, int cLevelLast, const char* dictBuf, int dictSize) { int benchError = 0; size_t const benchedSize = 10000000; void* const srcBuffer = malloc(benchedSize); /* Memory allocation */ if (!srcBuffer) END_PROCESS(21, "not enough memory"); /* Fill input buffer */ LOREM_genBuffer(srcBuffer, benchedSize, 0); /* Bench */ benchError = BMK_benchCLevel(srcBuffer, benchedSize, "Lorem ipsum", cLevel, cLevelLast, &benchedSize, 1, dictBuf, dictSize); /* clean up */ free(srcBuffer); return benchError; } static int BMK_benchFilesSeparately(const char** fileNamesTable, unsigned nbFiles, int cLevel, int cLevelLast, const char* dictBuf, int dictSize) { int benchError = 0; unsigned fileNb; if (cLevel > LZ4HC_CLEVEL_MAX) cLevel = LZ4HC_CLEVEL_MAX; if (cLevelLast > LZ4HC_CLEVEL_MAX) cLevelLast = LZ4HC_CLEVEL_MAX; if (cLevelLast < cLevel) cLevelLast = cLevel; for (fileNb=0; fileNb LZ4HC_CLEVEL_MAX) cLevel = LZ4HC_CLEVEL_MAX; if (g_decodeOnly) { DISPLAYLEVEL(2, "Benchmark Decompression of LZ4 Frame "); if (g_skipChecksums) { DISPLAYLEVEL(2, "_without_ checksum even when present \n"); } else { DISPLAYLEVEL(2, "+ Checksum when present \n"); } cLevelLast = cLevel; } if (cLevelLast > LZ4HC_CLEVEL_MAX) cLevelLast = LZ4HC_CLEVEL_MAX; if (cLevelLast < cLevel) cLevelLast = cLevel; if (cLevelLast > cLevel) DISPLAYLEVEL(2, "Benchmarking levels from %d to %d\n", cLevel, cLevelLast); if (dictFileName) { FILE* dictFile = NULL; U64 const dictFileSize = UTIL_getFileSize(dictFileName); if (!dictFileSize) END_PROCESS(25, "Dictionary error : could not stat dictionary file"); if (g_decodeOnly) END_PROCESS(26, "Error : LZ4 Frame decoder mode not compatible with dictionary yet"); dictFile = fopen(dictFileName, "rb"); if (!dictFile) END_PROCESS(25, "Dictionary error : could not open dictionary file"); if (dictFileSize > LZ4_MAX_DICT_SIZE) { dictSize = LZ4_MAX_DICT_SIZE; if (UTIL_fseek(dictFile, (long)(dictFileSize - dictSize), SEEK_SET)) END_PROCESS(25, "Dictionary error : could not seek dictionary file"); } else { dictSize = (size_t)dictFileSize; } dictBuf = (char*)malloc(dictSize); if (!dictBuf) END_PROCESS(25, "Allocation error : not enough memory"); if (fread(dictBuf, 1, dictSize, dictFile) != dictSize) END_PROCESS(25, "Dictionary error : could not read dictionary file"); fclose(dictFile); } if (nbFiles == 0) { benchError = BMK_syntheticTest(cLevel, cLevelLast, dictBuf, (int)dictSize); } else { if (g_benchSeparately) benchError = BMK_benchFilesSeparately(fileNamesTable, nbFiles, cLevel, cLevelLast, dictBuf, (int)dictSize); else benchError = BMK_benchFileTable(fileNamesTable, nbFiles, cLevel, cLevelLast, dictBuf, (int)dictSize); } free(dictBuf); return benchError; }