// File: lzham_vector.h // See Copyright Notice and license at the end of include/lzham.h #pragma once namespace lzham { struct elemental_vector { void* m_p; uint m_size; uint m_capacity; typedef void (*object_mover)(void* pDst, void* pSrc, uint num); bool increase_capacity(uint min_new_capacity, bool grow_hint, uint element_size, object_mover pRelocate, bool nofail); }; template class vector : public helpers::rel_ops< vector > { public: typedef T* iterator; typedef const T* const_iterator; typedef T value_type; typedef T& reference; typedef const T& const_reference; typedef T* pointer; typedef const T* const_pointer; inline vector() : m_p(NULL), m_size(0), m_capacity(0) { } inline vector(uint n, const T& init) : m_p(NULL), m_size(0), m_capacity(0) { increase_capacity(n, false); helpers::construct_array(m_p, n, init); m_size = n; } inline vector(const vector& other) : m_p(NULL), m_size(0), m_capacity(0) { increase_capacity(other.m_size, false); m_size = other.m_size; if (LZHAM_IS_BITWISE_COPYABLE(T)) memcpy(m_p, other.m_p, m_size * sizeof(T)); else { T* pDst = m_p; const T* pSrc = other.m_p; for (uint i = m_size; i > 0; i--) helpers::construct(pDst++, *pSrc++); } } inline explicit vector(uint size) : m_p(NULL), m_size(0), m_capacity(0) { try_resize(size); } inline ~vector() { if (m_p) { scalar_type::destruct_array(m_p, m_size); lzham_free(m_p); } } inline vector& operator= (const vector& other) { if (this == &other) return *this; if (m_capacity >= other.m_size) try_resize(0); else { clear(); if (!increase_capacity(other.m_size, false)) { LZHAM_FAIL("lzham::vector operator=: Out of memory!"); return *this; } } if (LZHAM_IS_BITWISE_COPYABLE(T)) memcpy(m_p, other.m_p, other.m_size * sizeof(T)); else { T* pDst = m_p; const T* pSrc = other.m_p; for (uint i = other.m_size; i > 0; i--) helpers::construct(pDst++, *pSrc++); } m_size = other.m_size; return *this; } inline const T* begin() const { return m_p; } T* begin() { return m_p; } inline const T* end() const { return m_p + m_size; } T* end() { return m_p + m_size; } inline bool empty() const { return !m_size; } inline uint size() const { return m_size; } inline uint size_in_bytes() const { return m_size * sizeof(T); } inline uint capacity() const { return m_capacity; } // operator[] will assert on out of range indices, but in final builds there is (and will never be) any range checking on this method. inline const T& operator[] (uint i) const { LZHAM_ASSERT(i < m_size); return m_p[i]; } inline T& operator[] (uint i) { LZHAM_ASSERT(i < m_size); return m_p[i]; } // at() always includes range checking, even in final builds, unlike operator []. // The first element is returned if the index is out of range. inline const T& at(uint i) const { LZHAM_ASSERT(i < m_size); return (i >= m_size) ? m_p[0] : m_p[i]; } inline T& at(uint i) { LZHAM_ASSERT(i < m_size); return (i >= m_size) ? m_p[0] : m_p[i]; } inline const T& front() const { LZHAM_ASSERT(m_size); return m_p[0]; } inline T& front() { LZHAM_ASSERT(m_size); return m_p[0]; } inline const T& back() const { LZHAM_ASSERT(m_size); return m_p[m_size - 1]; } inline T& back() { LZHAM_ASSERT(m_size); return m_p[m_size - 1]; } inline const T* get_ptr() const { return m_p; } inline T* get_ptr() { return m_p; } inline void clear() { if (m_p) { scalar_type::destruct_array(m_p, m_size); lzham_free(m_p); m_p = NULL; m_size = 0; m_capacity = 0; } } inline void clear_no_destruction() { if (m_p) { lzham_free(m_p); m_p = NULL; m_size = 0; m_capacity = 0; } } inline bool try_reserve(uint new_capacity) { return increase_capacity(new_capacity, true, true); } inline bool try_resize(uint new_size, bool grow_hint = false) { if (m_size != new_size) { if (new_size < m_size) scalar_type::destruct_array(m_p + new_size, m_size - new_size); else { if (new_size > m_capacity) { if (!increase_capacity(new_size, (new_size == (m_size + 1)) || grow_hint, true)) return false; } scalar_type::construct_array(m_p + m_size, new_size - m_size); } m_size = new_size; } return true; } inline bool try_resize_no_construct(uint new_size, bool grow_hint = false) { if (new_size > m_capacity) { if (!increase_capacity(new_size, (new_size == (m_size + 1)) || grow_hint, true)) return false; } m_size = new_size; return true; } inline T* try_enlarge(uint i) { uint cur_size = m_size; if (!try_resize(cur_size + i, true)) return NULL; return get_ptr() + cur_size; } inline bool try_push_back(const T& obj) { LZHAM_ASSERT(!m_p || (&obj < m_p) || (&obj >= (m_p + m_size))); if (m_size >= m_capacity) { if (!increase_capacity(m_size + 1, true, true)) return false; } scalar_type::construct(m_p + m_size, obj); m_size++; return true; } inline void pop_back() { LZHAM_ASSERT(m_size); if (m_size) { m_size--; scalar_type::destruct(&m_p[m_size]); } } inline bool insert(uint index, const T* p, uint n) { LZHAM_ASSERT(index <= m_size); if (!n) return true; const uint orig_size = m_size; if (!try_resize(m_size + n, true)) return false; const uint num_to_move = orig_size - index; if (num_to_move) { if (LZHAM_IS_BITWISE_COPYABLE(T)) memmove(m_p + index + n, m_p + index, sizeof(T) * num_to_move); else { const T* pSrc = m_p + orig_size - 1; T* pDst = const_cast(pSrc) + n; for (uint i = 0; i < num_to_move; i++) { LZHAM_ASSERT((pDst - m_p) < (int)m_size); *pDst-- = *pSrc--; } } } T* pDst = m_p + index; if (LZHAM_IS_BITWISE_COPYABLE(T)) memcpy(pDst, p, sizeof(T) * n); else { for (uint i = 0; i < n; i++) { LZHAM_ASSERT((pDst - m_p) < (int)m_size); *pDst++ = *p++; } } return true; } // push_front() isn't going to be very fast - it's only here for usability. inline bool try_push_front(const T& obj) { return insert(0, &obj, 1); } bool append(const vector& other) { if (other.m_size) return insert(m_size, &other[0], other.m_size); return true; } bool append(const T* p, uint n) { if (n) return insert(m_size, p, n); return true; } inline void erase(uint start, uint n) { LZHAM_ASSERT((start + n) <= m_size); if ((start + n) > m_size) return; if (!n) return; const uint num_to_move = m_size - (start + n); T* pDst = m_p + start; const T* pSrc = m_p + start + n; if (LZHAM_IS_BITWISE_COPYABLE(T)) memmove(pDst, pSrc, num_to_move * sizeof(T)); else { T* pDst_end = pDst + num_to_move; while (pDst != pDst_end) *pDst++ = *pSrc++; scalar_type::destruct_array(pDst_end, n); } m_size -= n; } inline void erase(uint index) { erase(index, 1); } inline void erase(T* p) { LZHAM_ASSERT((p >= m_p) && (p < (m_p + m_size))); erase(static_cast(p - m_p)); } void erase_unordered(uint index) { LZHAM_ASSERT(index < m_size); if ((index + 1) < m_size) (*this)[index] = back(); pop_back(); } inline bool operator== (const vector& rhs) const { if (m_size != rhs.m_size) return false; else if (m_size) { if (scalar_type::cFlag) return memcmp(m_p, rhs.m_p, sizeof(T) * m_size) == 0; else { const T* pSrc = m_p; const T* pDst = rhs.m_p; for (uint i = m_size; i; i--) if (!(*pSrc++ == *pDst++)) return false; } } return true; } inline bool operator< (const vector& rhs) const { const uint min_size = math::minimum(m_size, rhs.m_size); const T* pSrc = m_p; const T* pSrc_end = m_p + min_size; const T* pDst = rhs.m_p; while ((pSrc < pSrc_end) && (*pSrc == *pDst)) { pSrc++; pDst++; } if (pSrc < pSrc_end) return *pSrc < *pDst; return m_size < rhs.m_size; } inline void swap(vector& other) { utils::swap(m_p, other.m_p); utils::swap(m_size, other.m_size); utils::swap(m_capacity, other.m_capacity); } inline void sort() { std::sort(begin(), end()); } inline void unique() { if (!empty()) { sort(); resize(std::unique(begin(), end()) - begin()); } } inline void reverse() { uint j = m_size >> 1; for (uint i = 0; i < j; i++) utils::swap(m_p[i], m_p[m_size - 1 - i]); } inline int find(const T& key) const { const T* p = m_p; const T* p_end = m_p + m_size; uint index = 0; while (p != p_end) { if (key == *p) return index; p++; index++; } return cInvalidIndex; } inline int find_sorted(const T& key) const { if (m_size) { // Uniform binary search - Knuth Algorithm 6.2.1 U, unrolled twice. int i = ((m_size + 1) >> 1) - 1; int m = m_size; for ( ; ; ) { LZHAM_ASSERT_OPEN_RANGE(i, 0, (int)m_size); const T* pKey_i = m_p + i; int cmp = key < *pKey_i; if ((!cmp) && (key == *pKey_i)) return i; m >>= 1; if (!m) break; cmp = -cmp; i += (((m + 1) >> 1) ^ cmp) - cmp; LZHAM_ASSERT_OPEN_RANGE(i, 0, (int)m_size); pKey_i = m_p + i; cmp = key < *pKey_i; if ((!cmp) && (key == *pKey_i)) return i; m >>= 1; if (!m) break; cmp = -cmp; i += (((m + 1) >> 1) ^ cmp) - cmp; } } return cInvalidIndex; } template inline int find_sorted(const T& key, Q less_than) const { if (m_size) { // Uniform binary search - Knuth Algorithm 6.2.1 U, unrolled twice. int i = ((m_size + 1) >> 1) - 1; int m = m_size; for ( ; ; ) { LZHAM_ASSERT_OPEN_RANGE(i, 0, (int)m_size); const T* pKey_i = m_p + i; int cmp = less_than(key, *pKey_i); if ((!cmp) && (!less_than(*pKey_i, key))) return i; m >>= 1; if (!m) break; cmp = -cmp; i += (((m + 1) >> 1) ^ cmp) - cmp; LZHAM_ASSERT_OPEN_RANGE(i, 0, (int)m_size); pKey_i = m_p + i; cmp = less_than(key, *pKey_i); if ((!cmp) && (!less_than(*pKey_i, key))) return i; m >>= 1; if (!m) break; cmp = -cmp; i += (((m + 1) >> 1) ^ cmp) - cmp; } } return cInvalidIndex; } inline uint count_occurences(const T& key) const { uint c = 0; const T* p = m_p; const T* p_end = m_p + m_size; while (p != p_end) { if (key == *p) c++; p++; } return c; } inline void set_all(const T& o) { if ((sizeof(T) == 1) && (scalar_type::cFlag)) memset(m_p, *reinterpret_cast(&o), m_size); else { T* pDst = m_p; T* pDst_end = pDst + m_size; while (pDst != pDst_end) *pDst++ = o; } } private: T* m_p; uint m_size; uint m_capacity; template struct is_vector { enum { cFlag = false }; }; template struct is_vector< vector > { enum { cFlag = true }; }; static void object_mover(void* pDst_void, void* pSrc_void, uint num) { T* pSrc = static_cast(pSrc_void); T* const pSrc_end = pSrc + num; T* pDst = static_cast(pDst_void); while (pSrc != pSrc_end) { new (static_cast(pDst)) T(*pSrc); pSrc->~T(); pSrc++; pDst++; } } inline bool increase_capacity(uint min_new_capacity, bool grow_hint, bool nofail = false) { return reinterpret_cast(this)->increase_capacity( min_new_capacity, grow_hint, sizeof(T), (LZHAM_IS_BITWISE_MOVABLE(T) || (is_vector::cFlag)) ? NULL : object_mover, nofail); } }; template struct bitwise_movable< vector > { enum { cFlag = true }; }; extern void vector_test(); template inline void swap(vector& a, vector& b) { a.swap(b); } } // namespace lzham