// File: lzham_match_accel.cpp // LZHAM is in the Public Domain. Please see the Public Domain declaration at the end of include/lzham.h #include "lzham_core.h" #include "lzham_match_accel.h" #include "lzham_timer.h" namespace lzham { static inline uint32 hash2_to_12(uint c0, uint c1) { return c0 ^ (c1 << 4); } static inline uint32 hash3_to_16(uint c0, uint c1, uint c2) { return (c0 | (c1 << 8)) ^ (c2 << 4); } search_accelerator::search_accelerator() : m_pLZBase(NULL), m_pTask_pool(NULL), m_max_helper_threads(0), m_max_dict_size(0), m_max_dict_size_mask(0), m_lookahead_pos(0), m_lookahead_size(0), m_cur_dict_size(0), m_fill_lookahead_pos(0), m_fill_lookahead_size(0), m_fill_dict_size(0), m_max_probes(0), m_max_matches(0), m_all_matches(false), m_next_match_ref(0), m_num_completed_helper_threads(0) { } bool search_accelerator::init(CLZBase* pLZBase, task_pool* pPool, uint max_helper_threads, uint max_dict_size, uint max_matches, bool all_matches, uint max_probes) { LZHAM_ASSERT(pLZBase); LZHAM_ASSERT(max_dict_size && math::is_power_of_2(max_dict_size)); LZHAM_ASSERT(max_probes); m_max_probes = LZHAM_MIN(cMatchAccelMaxSupportedProbes, max_probes); m_pLZBase = pLZBase; m_pTask_pool = max_helper_threads ? pPool : NULL; m_max_helper_threads = m_pTask_pool ? max_helper_threads : 0; m_max_matches = LZHAM_MIN(m_max_probes, max_matches); m_all_matches = all_matches; m_max_dict_size = max_dict_size; m_max_dict_size_mask = m_max_dict_size - 1; m_cur_dict_size = 0; m_lookahead_size = 0; m_lookahead_pos = 0; m_fill_lookahead_pos = 0; m_fill_lookahead_size = 0; m_fill_dict_size = 0; m_num_completed_helper_threads = 0; if (!m_dict.try_resize_no_construct(max_dict_size + LZHAM_MIN(m_max_dict_size, static_cast(CLZBase::cMaxHugeMatchLen)))) return false; if (!m_hash.try_resize_no_construct(cHashSize)) return false; if (!m_nodes.try_resize_no_construct(max_dict_size)) return false; memset(m_hash.get_ptr(), 0, m_hash.size_in_bytes()); return true; } void search_accelerator::reset() { m_cur_dict_size = 0; m_lookahead_size = 0; m_lookahead_pos = 0; m_fill_lookahead_pos = 0; m_fill_lookahead_size = 0; m_fill_dict_size = 0; m_num_completed_helper_threads = 0; // Clearing the hash tables is only necessary for determinism (otherwise, it's possible the matches returned after a reset will depend on the data processes before the reset). if (m_hash.size()) memset(m_hash.get_ptr(), 0, m_hash.size_in_bytes()); if (m_digram_hash.size()) memset(m_digram_hash.get_ptr(), 0, m_digram_hash.size_in_bytes()); } void search_accelerator::flush() { m_cur_dict_size = 0; } uint search_accelerator::get_max_add_bytes() const { uint add_pos = static_cast(m_lookahead_pos & (m_max_dict_size - 1)); return m_max_dict_size - add_pos; } static uint8 g_hamming_dist[256] = { 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 4, 5, 5, 6, 5, 6, 6, 7, 5, 6, 6, 7, 6, 7, 7, 8 }; void search_accelerator::find_all_matches_callback(uint64 data, void* pData_ptr) { scoped_perf_section find_all_matches_timer("find_all_matches_callback"); LZHAM_NOTE_UNUSED(pData_ptr); const uint thread_index = (uint)data; dict_match temp_matches[cMatchAccelMaxSupportedProbes * 2]; uint fill_lookahead_pos = m_fill_lookahead_pos; uint fill_dict_size = m_fill_dict_size; uint fill_lookahead_size = m_fill_lookahead_size; uint c0 = 0, c1 = 0; if (fill_lookahead_size >= 2) { c0 = m_dict[fill_lookahead_pos & m_max_dict_size_mask]; c1 = m_dict[(fill_lookahead_pos & m_max_dict_size_mask) + 1]; } const uint8* pDict = m_dict.get_ptr(); while (fill_lookahead_size >= 3) { uint insert_pos = fill_lookahead_pos & m_max_dict_size_mask; uint c2 = pDict[insert_pos + 2]; uint h = hash3_to_16(c0, c1, c2); c0 = c1; c1 = c2; LZHAM_ASSERT(!m_hash_thread_index.size() || (m_hash_thread_index[h] != LZHAM_UINT8_MAX)); // Only process those strings that this worker thread was assigned to - this allows us to manipulate multiple trees in parallel with no worries about synchronization. if (m_hash_thread_index.size() && (m_hash_thread_index[h] != thread_index)) { fill_lookahead_pos++; fill_lookahead_size--; fill_dict_size++; continue; } dict_match* pDstMatch = temp_matches; uint cur_pos = m_hash[h]; m_hash[h] = static_cast(fill_lookahead_pos); uint *pLeft = &m_nodes[insert_pos].m_left; uint *pRight = &m_nodes[insert_pos].m_right; const uint max_match_len = LZHAM_MIN(static_cast(CLZBase::cMaxMatchLen), fill_lookahead_size); uint best_match_len = 2; const uint8* pIns = &pDict[insert_pos]; uint n = m_max_probes; for ( ; ; ) { uint delta_pos = fill_lookahead_pos - cur_pos; if ((n-- == 0) || (!delta_pos) || (delta_pos >= fill_dict_size)) { *pLeft = 0; *pRight = 0; break; } uint pos = cur_pos & m_max_dict_size_mask; node *pNode = &m_nodes[pos]; // Unfortunately, the initial compare match_len must be 0 because of the way we hash and truncate matches at the end of each block. uint match_len = 0; const uint8* pComp = &pDict[pos]; #if LZHAM_PLATFORM_X360 || (LZHAM_USE_UNALIGNED_INT_LOADS == 0) for ( ; match_len < max_match_len; match_len++) if (pComp[match_len] != pIns[match_len]) break; #else // Compare a qword at a time for a bit more efficiency. const uint64* pComp_end = reinterpret_cast(pComp + max_match_len - 7); const uint64* pComp_cur = reinterpret_cast(pComp); const uint64* pIns_cur = reinterpret_cast(pIns); while (pComp_cur < pComp_end) { if (*pComp_cur != *pIns_cur) break; pComp_cur++; pIns_cur++; } uint alt_match_len = static_cast(reinterpret_cast(pComp_cur) - reinterpret_cast(pComp)); for ( ; alt_match_len < max_match_len; alt_match_len++) if (pComp[alt_match_len] != pIns[alt_match_len]) break; #ifdef LZVERIFY for ( ; match_len < max_match_len; match_len++) if (pComp[match_len] != pIns[match_len]) break; LZHAM_VERIFY(alt_match_len == match_len); #endif match_len = alt_match_len; #endif if (match_len > best_match_len) { pDstMatch->m_len = static_cast(match_len - CLZBase::cMinMatchLen); pDstMatch->m_dist = delta_pos; pDstMatch++; best_match_len = match_len; if (match_len == max_match_len) { *pLeft = pNode->m_left; *pRight = pNode->m_right; break; } } else if (m_all_matches) { pDstMatch->m_len = static_cast(match_len - CLZBase::cMinMatchLen); pDstMatch->m_dist = delta_pos; pDstMatch++; } else if ((best_match_len > 2) && (best_match_len == match_len)) { uint bestMatchDist = pDstMatch[-1].m_dist; uint compMatchDist = delta_pos; uint bestMatchSlot, bestMatchSlotOfs; m_pLZBase->compute_lzx_position_slot(bestMatchDist, bestMatchSlot, bestMatchSlotOfs); uint compMatchSlot, compMatchOfs; m_pLZBase->compute_lzx_position_slot(compMatchDist, compMatchSlot, compMatchOfs); // If both matches uses the same match slot, choose the one with the offset containing the lowest nibble as these bits separately entropy coded. // This could choose a match which is further away in the absolute sense, but closer in a coding sense. if ( (compMatchSlot < bestMatchSlot) || ((compMatchSlot >= 8) && (compMatchSlot == bestMatchSlot) && ((compMatchOfs & 15) < (bestMatchSlotOfs & 15))) ) { LZHAM_ASSERT((pDstMatch[-1].m_len + (uint)CLZBase::cMinMatchLen) == best_match_len); pDstMatch[-1].m_dist = delta_pos; } else if ((match_len < max_match_len) && (compMatchSlot <= bestMatchSlot)) { // Choose the match which has lowest hamming distance in the mismatch byte for a tiny win on binary files. // TODO: This competes against the prev. optimization. uint desired_mismatch_byte = pIns[match_len]; uint cur_mismatch_byte = pDict[(insert_pos - bestMatchDist + match_len) & m_max_dict_size_mask]; uint cur_mismatch_dist = g_hamming_dist[cur_mismatch_byte ^ desired_mismatch_byte]; uint new_mismatch_byte = pComp[match_len]; uint new_mismatch_dist = g_hamming_dist[new_mismatch_byte ^ desired_mismatch_byte]; if (new_mismatch_dist < cur_mismatch_dist) { LZHAM_ASSERT((pDstMatch[-1].m_len + (uint)CLZBase::cMinMatchLen) == best_match_len); pDstMatch[-1].m_dist = delta_pos; } } } uint new_pos; if (pComp[match_len] < pIns[match_len]) { *pLeft = cur_pos; pLeft = &pNode->m_right; new_pos = pNode->m_right; } else { *pRight = cur_pos; pRight = &pNode->m_left; new_pos = pNode->m_left; } if (new_pos == cur_pos) break; cur_pos = new_pos; } const uint num_matches = (uint)(pDstMatch - temp_matches); if (num_matches) { pDstMatch[-1].m_dist |= 0x80000000; const uint num_matches_to_write = LZHAM_MIN(num_matches, m_max_matches); const uint match_ref_ofs = static_cast(atomic_exchange_add(&m_next_match_ref, num_matches_to_write)); memcpy(&m_matches[match_ref_ofs], temp_matches + (num_matches - num_matches_to_write), sizeof(temp_matches[0]) * num_matches_to_write); // FIXME: This is going to really hurt on platforms requiring export barriers. LZHAM_MEMORY_EXPORT_BARRIER atomic_exchange32((atomic32_t*)&m_match_refs[static_cast(fill_lookahead_pos - m_fill_lookahead_pos)], match_ref_ofs); } else { atomic_exchange32((atomic32_t*)&m_match_refs[static_cast(fill_lookahead_pos - m_fill_lookahead_pos)], -2); } fill_lookahead_pos++; fill_lookahead_size--; fill_dict_size++; } while (fill_lookahead_size) { uint insert_pos = fill_lookahead_pos & m_max_dict_size_mask; m_nodes[insert_pos].m_left = 0; m_nodes[insert_pos].m_right = 0; atomic_exchange32((atomic32_t*)&m_match_refs[static_cast(fill_lookahead_pos - m_fill_lookahead_pos)], -2); fill_lookahead_pos++; fill_lookahead_size--; fill_dict_size++; } atomic_increment32(&m_num_completed_helper_threads); } bool search_accelerator::find_len2_matches() { if (!m_digram_hash.size()) { if (!m_digram_hash.try_resize(cDigramHashSize)) return false; } if (m_digram_next.size() < m_lookahead_size) { if (!m_digram_next.try_resize(m_lookahead_size)) return false; } uint lookahead_dict_pos = m_lookahead_pos & m_max_dict_size_mask; for (int lookahead_ofs = 0; lookahead_ofs < ((int)m_lookahead_size - 1); ++lookahead_ofs, ++lookahead_dict_pos) { uint c0 = m_dict[lookahead_dict_pos]; uint c1 = m_dict[lookahead_dict_pos + 1]; uint h = hash2_to_12(c0, c1) & (cDigramHashSize - 1); m_digram_next[lookahead_ofs] = m_digram_hash[h]; m_digram_hash[h] = m_lookahead_pos + lookahead_ofs; } m_digram_next[m_lookahead_size - 1] = 0; return true; } uint search_accelerator::get_len2_match(uint lookahead_ofs) { if ((m_fill_lookahead_size - lookahead_ofs) < 2) return 0; uint cur_pos = m_lookahead_pos + lookahead_ofs; uint next_match_pos = m_digram_next[cur_pos - m_fill_lookahead_pos]; uint match_dist = cur_pos - next_match_pos; if ((!match_dist) || (match_dist > CLZBase::cMaxLen2MatchDist) || (match_dist > (m_cur_dict_size + lookahead_ofs))) return 0; const uint8* pCur = &m_dict[cur_pos & m_max_dict_size_mask]; const uint8* pMatch = &m_dict[next_match_pos & m_max_dict_size_mask]; if ((pCur[0] == pMatch[0]) && (pCur[1] == pMatch[1])) return match_dist; return 0; } bool search_accelerator::find_all_matches(uint num_bytes) { if (!m_matches.try_resize_no_construct(m_max_probes * num_bytes)) return false; if (!m_match_refs.try_resize_no_construct(num_bytes)) return false; memset(m_match_refs.get_ptr(), 0xFF, m_match_refs.size_in_bytes()); m_fill_lookahead_pos = m_lookahead_pos; m_fill_lookahead_size = num_bytes; m_fill_dict_size = m_cur_dict_size; m_next_match_ref = 0; if (!m_pTask_pool) { find_all_matches_callback(0, NULL); m_num_completed_helper_threads = 0; } else { if (!m_hash_thread_index.try_resize_no_construct(0x10000)) return false; memset(m_hash_thread_index.get_ptr(), 0xFF, m_hash_thread_index.size_in_bytes()); uint next_thread_index = 0; const uint8* pDict = &m_dict[m_lookahead_pos & m_max_dict_size_mask]; uint num_unique_trigrams = 0; if (num_bytes >= 3) { uint c0 = pDict[0]; uint c1 = pDict[1]; const int limit = ((int)num_bytes - 2); for (int i = 0; i < limit; i++) { uint c2 = pDict[2]; uint t = hash3_to_16(c0, c1, c2); c0 = c1; c1 = c2; pDict++; if (m_hash_thread_index[t] == LZHAM_UINT8_MAX) { num_unique_trigrams++; m_hash_thread_index[t] = static_cast(next_thread_index); if (++next_thread_index == m_max_helper_threads) next_thread_index = 0; } } } m_num_completed_helper_threads = 0; if (!m_pTask_pool->queue_multiple_object_tasks(this, &search_accelerator::find_all_matches_callback, 0, m_max_helper_threads)) return false; } return find_len2_matches(); } bool search_accelerator::add_bytes_begin(uint num_bytes, const uint8* pBytes) { LZHAM_ASSERT(num_bytes <= m_max_dict_size); LZHAM_ASSERT(!m_lookahead_size); uint add_pos = m_lookahead_pos & m_max_dict_size_mask; LZHAM_ASSERT((add_pos + num_bytes) <= m_max_dict_size); memcpy(&m_dict[add_pos], pBytes, num_bytes); uint dict_bytes_to_mirror = LZHAM_MIN(static_cast(CLZBase::cMaxHugeMatchLen), m_max_dict_size); if (add_pos < dict_bytes_to_mirror) memcpy(&m_dict[m_max_dict_size], &m_dict[0], dict_bytes_to_mirror); m_lookahead_size = num_bytes; uint max_possible_dict_size = m_max_dict_size - num_bytes; m_cur_dict_size = LZHAM_MIN(m_cur_dict_size, max_possible_dict_size); m_next_match_ref = 0; return find_all_matches(num_bytes); } void search_accelerator::add_bytes_end() { if (m_pTask_pool) { m_pTask_pool->join(); } LZHAM_ASSERT((uint)m_next_match_ref <= m_matches.size()); } dict_match* search_accelerator::find_matches(uint lookahead_ofs, bool spin) { LZHAM_ASSERT(lookahead_ofs < m_lookahead_size); const uint match_ref_ofs = static_cast(m_lookahead_pos - m_fill_lookahead_pos + lookahead_ofs); int match_ref; uint spin_count = 0; // This may spin until the match finder job(s) catch up to the caller's lookahead position. for ( ; ; ) { match_ref = static_cast(m_match_refs[match_ref_ofs]); if (match_ref == -2) return NULL; else if (match_ref != -1) break; spin_count++; const uint cMaxSpinCount = 1000; if ((spin) && (spin_count < cMaxSpinCount)) { lzham_yield_processor(); lzham_yield_processor(); lzham_yield_processor(); lzham_yield_processor(); lzham_yield_processor(); lzham_yield_processor(); lzham_yield_processor(); lzham_yield_processor(); LZHAM_MEMORY_IMPORT_BARRIER } else { spin_count = cMaxSpinCount; lzham_sleep(1); } } LZHAM_MEMORY_IMPORT_BARRIER return &m_matches[match_ref]; } void search_accelerator::advance_bytes(uint num_bytes) { LZHAM_ASSERT(num_bytes <= m_lookahead_size); m_lookahead_pos += num_bytes; m_lookahead_size -= num_bytes; m_cur_dict_size += num_bytes; LZHAM_ASSERT(m_cur_dict_size <= m_max_dict_size); } }