# Module :: proc_macro_tools [![experimental](https://raster.shields.io/static/v1?label=&message=experimental&color=orange)](https://github.com/emersion/stability-badges#experimental) [![rust-status](https://github.com/Wandalen/wTools/actions/workflows/module_macro_tools_push.yml/badge.svg)](https://github.com/Wandalen/wTools/actions/workflows/module_macro_tools_push.yml) [![docs.rs](https://img.shields.io/docsrs/macro_tools?color=e3e8f0&logo=docs.rs)](https://docs.rs/macro_tools) [![Open in Gitpod](https://raster.shields.io/static/v1?label=try&message=online&color=eee&logo=gitpod&logoColor=eee)](https://gitpod.io/#RUN_PATH=.,SAMPLE_FILE=module%2Fcore%2Fmacro_tools%2Fexamples%2Fmacro_tools_trivial.rs,RUN_POSTFIX=--example%20macro_tools_trivial/https://github.com/Wandalen/wTools) [![discord](https://img.shields.io/discord/872391416519737405?color=eee&logo=discord&logoColor=eee&label=ask)](https://discord.gg/m3YfbXpUUY) Tools for writing procedural macros. ### Example: Trivial One The purpose of `typ::type_parameters` is to extract type parameters from a given Rust type. In this example, we generate a type `core::option::Option` and extract its type parameters. ```rust #[ cfg( not( all( feature = "enabled", feature = "typ" ) ) ) ] fn main(){} #[ cfg( all( feature = "enabled", feature = "typ" ) ) ] fn main() { // Import necessary macros and modules from the `macro_tools` crate. use macro_tools::{ typ, qt }; // Generate a token stream representing the type `core::option::Option`. let code = qt!( core::option::Option< i8, i16, i32, i64 > ); // Parse the generated token stream into a `syn::Type` object. // `syn::Type` is a syntax tree node representing a Rust type. let tree_type = syn::parse2::< syn::Type >( code ).unwrap(); // Extract type parameters from the parsed type. // `typ::type_parameters` takes a reference to a `syn::Type` and a range. // It returns a vector of type parameters within the specified range. // Here, `0..=2` specifies that we are interested in the first three type parameters. let got = typ::type_parameters( &tree_type, 0..=2 ); // Iterate over the extracted type parameters and print each one. // The `qt!` macro is used to convert the type parameter back to a token stream for printing. got.iter().for_each( | e | println!( "{}", qt!( #e ) ) ); /* Expected output: i8 i16 i32 */ } ``` Try out `cargo run --example macro_tools_trivial`.
[See code](./examples/macro_tools_trivial.rs). ### Example: Attribute Properties This example demonstrates an approach to parsing attributes and their properties. The attributes are collected into a struct that aggregates them, and attribute properties are parsed using reusable components from a library. The example shows how to use `AttributePropertyBoolean` for parsing boolean properties and the roles of the traits `AttributePropertyComponent` and `AttributeComponent`. The `Assign` trait is also used to simplify the logic of assigning fields. Attributes are collected into a `ItemAttributes` struct, and attribute properties are parsed using reusable components like `AttributePropertyBoolean`. - `AttributeComponent`: A trait that defines how an attribute should be parsed from a `syn::Attribute`. - `AttributePropertyComponent`: A trait that defines a marker for attribute properties. - `Assign`: A trait that simplifies the logic of assigning fields to a struct. Using a component-based approach requires each field to have a unique type, which aligns with the strengths of strongly-typed languages. This method ensures that the logic of assigning values to fields is encapsulated within the fields themselves, promoting modularity and reusability. The reusable property components from the library come with parameters that distinguish different properties of the same type. This is useful when an attribute has multiple boolean properties, for instance. Such an approach helps to avoid limitations where it is always possible to define traits for custom types, while it may not be possible for types defined in other crates. ```rust #[ cfg( not( all( feature = "enabled", feature = "attr_prop", debug_assertions ) ) ) ] fn main(){} #[ cfg( all( feature = "enabled", feature = "attr_prop", debug_assertions ) ) ] fn main() { use macro_tools:: { attr, ct, syn_err, return_syn_err, qt, Result, AttributeComponent, AttributePropertyComponent, AttributePropertyBoolean, AttributePropertySingletone, Assign, }; /// Represents the attributes of a struct. Aggregates all its attributes. #[ derive( Debug, Default ) ] pub struct ItemAttributes { /// Attribute for customizing the mutation process. pub mutator : AttributeMutator, } impl ItemAttributes { /// Constructs a `ItemAttributes` instance from an iterator of attributes. /// /// This function parses the provided attributes and assigns them to the /// appropriate fields in the `ItemAttributes` struct. pub fn from_attrs< 'a >( attrs : impl Iterator< Item = & 'a syn::Attribute > ) -> Result< Self > { let mut result = Self::default(); // Closure to generate an error message for unknown attributes. let error = | attr : & syn::Attribute | -> syn::Error { let known_attributes = ct::str::format! ( "Known attributes are: {}, {}.", "debug", AttributeMutator::KEYWORD, ); syn_err! ( attr, "Expects an attribute of format '#[ attribute( key1 = val1, key2 = val2 ) ]'\n {known_attributes}\n But got: '{}'", qt! { #attr } ) }; for attr in attrs { let key_ident = attr.path().get_ident().ok_or_else( || error( attr ) )?; let key_str = format!( "{}", key_ident ); match key_str.as_ref() { AttributeMutator::KEYWORD => result.assign( AttributeMutator::from_meta( attr )? ), "debug" => {}, _ => {}, } } Ok( result ) } } /// Represents attributes for customizing the mutation process in a forming operation. /// /// ## Example of code /// /// ```ignore /// #[ mutator( custom = true, debug = true ) ] /// ``` #[ derive( Debug, Default ) ] pub struct AttributeMutator { /// Indicates whether a custom mutator should be generated. /// Defaults to `false`, meaning no custom mutator is generated unless explicitly requested. pub custom : AttributePropertyCustom, /// Specifies whether to print code generated for the field. /// Defaults to `false`, which means no hint is provided unless explicitly requested. pub debug : AttributePropertyDebug, } impl AttributeComponent for AttributeMutator { const KEYWORD : & 'static str = "mutator"; /// Parses a `syn::Attribute` into an `AttributeMutator`. fn from_meta( attr : & syn::Attribute ) -> Result< Self > { match attr.meta { syn::Meta::List( ref meta_list ) => { return syn::parse2::< AttributeMutator >( meta_list.tokens.clone() ); }, syn::Meta::Path( ref _path ) => { return Ok( Default::default() ) }, _ => return_syn_err! ( attr, "Expects an attribute of format `#[ mutator( custom = true ) ]`. \nGot: {}", qt! { #attr } ), } } } // Implement `Assign` trait to allow assigning `AttributeMutator` to `ItemAttributes`. impl< IntoT > Assign< AttributeMutator, IntoT > for ItemAttributes where IntoT : Into< AttributeMutator >, { #[ inline( always ) ] fn assign( & mut self, component : IntoT ) { self.mutator = component.into(); } } // Implement `Assign` trait to allow assigning `AttributePropertyDebug` to `AttributeMutator`. impl< IntoT > Assign< AttributePropertyDebug, IntoT > for AttributeMutator where IntoT : Into< AttributePropertyDebug >, { #[ inline( always ) ] fn assign( & mut self, component : IntoT ) { self.debug = component.into(); } } // Implement `Assign` trait to allow assigning `AttributePropertyCustom` to `AttributeMutator`. impl< IntoT > Assign< AttributePropertyCustom, IntoT > for AttributeMutator where IntoT : Into< AttributePropertyCustom >, { #[ inline( always ) ] fn assign( & mut self, component : IntoT ) { self.custom = component.into(); } } impl syn::parse::Parse for AttributeMutator { fn parse( input : syn::parse::ParseStream< '_ > ) -> syn::Result< Self > { let mut result = Self::default(); let error = | ident : & syn::Ident | -> syn::Error { let known = ct::str::format! ( "Known entries of attribute {} are: {}, {}.", AttributeMutator::KEYWORD, AttributePropertyCustom::KEYWORD, AttributePropertyDebug::KEYWORD, ); syn_err! ( ident, r#"Expects an attribute of format '#[ mutator( custom = false ) ]' {known} But got: '{}' "#, qt! { #ident } ) }; while !input.is_empty() { let lookahead = input.lookahead1(); if lookahead.peek( syn::Ident ) { let ident : syn::Ident = input.parse()?; match ident.to_string().as_str() { AttributePropertyCustom::KEYWORD => result.assign( AttributePropertyCustom::parse( input )? ), AttributePropertyDebug::KEYWORD => result.assign( AttributePropertyDebug::from( true ) ), _ => return Err( error( & ident ) ), } } else { return Err( lookahead.error() ); } // Optional comma handling if input.peek( syn::Token![,] ) { input.parse::< syn::Token![,] >()?; } } Ok( result ) } } // == Attribute properties /// Marker type for attribute property to specify whether to provide a sketch as a hint. /// Defaults to `false`, which means no hint is provided unless explicitly requested. #[ derive( Debug, Default, Clone, Copy ) ] pub struct AttributePropertyDebugMarker; impl AttributePropertyComponent for AttributePropertyDebugMarker { const KEYWORD : & 'static str = "debug"; } /// Specifies whether to provide a sketch as a hint. /// Defaults to `false`, which means no hint is provided unless explicitly requested. pub type AttributePropertyDebug = AttributePropertySingletone< AttributePropertyDebugMarker >; // == /// Marker type for attribute property to indicate whether a custom code should be generated. /// Defaults to `false`, meaning no custom code is generated unless explicitly requested. #[ derive( Debug, Default, Clone, Copy ) ] pub struct AttributePropertyCustomMarker; impl AttributePropertyComponent for AttributePropertyCustomMarker { const KEYWORD : & 'static str = "custom"; } /// Indicates whether a custom code should be generated. /// Defaults to `false`, meaning no custom code is generated unless explicitly requested. pub type AttributePropertyCustom = AttributePropertyBoolean< AttributePropertyCustomMarker >; // == test code // Parse an attribute and construct a `ItemAttributes` instance. let input : syn::Attribute = syn::parse_quote!( #[ mutator( custom = true ) ] ); let attrs : ItemAttributes = ItemAttributes::from_attrs( std::iter::once( & input ) ).unwrap(); println!( "{:?}", attrs ); // Test `AttributePropertyBoolean` functionality. let attr : AttributePropertyBoolean< AttributePropertyDebugMarker > = AttributePropertyBoolean::default(); assert_eq!( attr.internal(), false ); let attr : AttributePropertyBoolean< AttributePropertyDebugMarker > = true.into(); assert_eq!( attr.internal(), true ); let attr : AttributePropertyBoolean< AttributePropertyDebugMarker > = false.into(); assert_eq!( attr.internal(), false ); } ``` Try out `cargo run --example macro_tools_attr_prop`.
[See code](./examples/macro_tools_attr_prop.rs). ### To add to your project ```sh cargo add proc_macro_tools ``` ### Try out from the repository ```sh git clone https://github.com/Wandalen/wTools cd wTools cd examples/macro_tools_trivial cargo run ```