/* * Copyright (c) 2023. * * This software is free software; * * You can redistribute it or modify it under terms of the MIT, Apache License or Zlib license */ //!Routines for progressive decoding /* This file is needlessly complicated, It is that way to ensure we don't burn memory anyhow Memory is a scarce resource in some environments, I would like this to be viable in such environments Half of the complexity comes from the jpeg spec, because progressive decoding, is one hell of a ride. */ use alloc::string::ToString; use alloc::vec::Vec; use alloc::{format, vec}; use core::cmp::min; use makepad_zune_core::bytestream::{ZByteReader, ZReaderTrait}; use makepad_zune_core::colorspace::ColorSpace; use crate::bitstream::BitStream; use crate::components::{ComponentID, SampleRatios}; use crate::decoder::{JpegDecoder, MAX_COMPONENTS}; use crate::errors::DecodeErrors; use crate::errors::DecodeErrors::Format; use crate::headers::{parse_huffman, parse_sos}; use crate::marker::Marker; use crate::mcu::DCT_BLOCK; use crate::misc::{calculate_padded_width, setup_component_params}; impl JpegDecoder { /// Decode a progressive image /// /// This routine decodes a progressive image, stopping if it finds any error. #[allow( clippy::needless_range_loop, clippy::cast_sign_loss, clippy::redundant_else, clippy::too_many_lines )] #[inline(never)] pub(crate) fn decode_mcu_ycbcr_progressive( &mut self, pixels: &mut [u8] ) -> Result<(), DecodeErrors> { setup_component_params(self)?; let mcu_height; // memory location for decoded pixels for components let mut block: [Vec; MAX_COMPONENTS] = [vec![], vec![], vec![], vec![]]; let mut mcu_width; let mut seen_scans = 1; if self.input_colorspace == ColorSpace::Luma && self.is_interleaved { warn!("Grayscale image with down-sampled component, resetting component details"); self.reset_params(); } if self.is_interleaved { // this helps us catch component errors. self.set_upsampling()?; } if self.is_interleaved { mcu_width = self.mcu_x; mcu_height = self.mcu_y; } else { mcu_width = (self.info.width as usize + 7) / 8; mcu_height = (self.info.height as usize + 7) / 8; } mcu_width *= 64; if self.input_colorspace.num_components() > self.components.len() { let msg = format!( " Expected {} number of components but found {}", self.input_colorspace.num_components(), self.components.len() ); return Err(DecodeErrors::Format(msg)); } for i in 0..self.input_colorspace.num_components() { let comp = &self.components[i]; let len = mcu_width * comp.vertical_sample * comp.horizontal_sample * mcu_height; block[i] = vec![0; len]; } let mut stream = BitStream::new_progressive( self.succ_high, self.succ_low, self.spec_start, self.spec_end ); // there are multiple scans in the stream, this should resolve the first scan self.parse_entropy_coded_data(&mut stream, &mut block)?; // extract marker let mut marker = stream .marker .take() .ok_or(DecodeErrors::FormatStatic("Marker missing where expected"))?; // if marker is EOI, we are done, otherwise continue scanning. // // In case we have a premature image, we print a warning or return // an error, depending on the strictness of the decoder, so there // is that logic to handle too 'eoi: while marker != Marker::EOI { match marker { Marker::DHT => { parse_huffman(self)?; } Marker::SOS => { parse_sos(self)?; stream.update_progressive_params( self.succ_high, self.succ_low, self.spec_start, self.spec_end ); // after every SOS, marker, parse data for that scan. self.parse_entropy_coded_data(&mut stream, &mut block)?; // extract marker, might either indicate end of image or we continue // scanning(hence the continue statement to determine). match get_marker(&mut self.stream, &mut stream) { Ok(marker_n) => { marker = marker_n; seen_scans += 1; if seen_scans > self.options.jpeg_get_max_scans() { return Err(DecodeErrors::Format(format!( "Too many scans, exceeded limit of {}", self.options.jpeg_get_max_scans() ))); } stream.reset(); continue 'eoi; } Err(msg) => { if self.options.get_strict_mode() { return Err(msg); } error!("{:?}", msg); break 'eoi; } } } _ => { break 'eoi; } } match get_marker(&mut self.stream, &mut stream) { Ok(marker_n) => { marker = marker_n; } Err(e) => { if self.options.get_strict_mode() { return Err(e); } error!("{}", e); } } } self.finish_progressive_decoding(&block, mcu_width, pixels) } #[allow(clippy::too_many_lines, clippy::cast_sign_loss)] fn parse_entropy_coded_data( &mut self, stream: &mut BitStream, buffer: &mut [Vec; MAX_COMPONENTS] ) -> Result<(), DecodeErrors> { stream.reset(); self.components.iter_mut().for_each(|x| x.dc_pred = 0); if usize::from(self.num_scans) > self.input_colorspace.num_components() { return Err(Format(format!( "Number of scans {} cannot be greater than number of components, {}", self.num_scans, self.input_colorspace.num_components() ))); } if self.num_scans == 1 { // Safety checks if self.spec_end != 0 && self.spec_start == 0 { return Err(DecodeErrors::FormatStatic( "Can't merge DC and AC corrupt jpeg" )); } // non interleaved data, process one block at a time in trivial scanline order let k = self.z_order[0]; if k >= self.components.len() { return Err(DecodeErrors::Format(format!( "Cannot find component {k}, corrupt image" ))); } let (mcu_width, mcu_height); if self.components[k].component_id == ComponentID::Y && (self.components[k].vertical_sample != 1 || self.components[k].horizontal_sample != 1) || !self.is_interleaved { // For Y channel or non interleaved scans , // mcu's is the image dimensions divided by 8 mcu_width = ((self.info.width + 7) / 8) as usize; mcu_height = ((self.info.height + 7) / 8) as usize; } else { // For other channels, in an interleaved mcu, number of MCU's // are determined by some weird maths done in headers.rs->parse_sos() mcu_width = self.mcu_x; mcu_height = self.mcu_y; } for i in 0..mcu_height { for j in 0..mcu_width { if self.spec_start != 0 && self.succ_high == 0 && stream.eob_run > 0 { // handle EOB runs here. stream.eob_run -= 1; continue; } let start = 64 * (j + i * (self.components[k].width_stride / 8)); let data: &mut [i16; 64] = buffer .get_mut(k) .unwrap() .get_mut(start..start + 64) .unwrap() .try_into() .unwrap(); if self.spec_start == 0 { let pos = self.components[k].dc_huff_table & (MAX_COMPONENTS - 1); let dc_table = self .dc_huffman_tables .get(pos) .ok_or(DecodeErrors::FormatStatic( "No huffman table for DC component" ))? .as_ref() .ok_or(DecodeErrors::FormatStatic( "Huffman table at index {} not initialized" ))?; let dc_pred = &mut self.components[k].dc_pred; if self.succ_high == 0 { // first scan for this mcu stream.decode_prog_dc_first( &mut self.stream, dc_table, &mut data[0], dc_pred )?; } else { // refining scans for this MCU stream.decode_prog_dc_refine(&mut self.stream, &mut data[0])?; } } else { let pos = self.components[k].ac_huff_table; let ac_table = self .ac_huffman_tables .get(pos) .ok_or_else(|| { DecodeErrors::Format(format!( "No huffman table for component:{pos}" )) })? .as_ref() .ok_or_else(|| { DecodeErrors::Format(format!( "Huffman table at index {pos} not initialized" )) })?; if self.succ_high == 0 { debug_assert!(stream.eob_run == 0, "EOB run is not zero"); stream.decode_mcu_ac_first(&mut self.stream, ac_table, data)?; } else { // refinement scan stream.decode_mcu_ac_refine(&mut self.stream, ac_table, data)?; } } // + EOB and investigate effect. self.todo -= 1; if self.todo == 0 { self.handle_rst(stream)?; } } } } else { if self.spec_end != 0 { return Err(DecodeErrors::HuffmanDecode( "Can't merge dc and AC corrupt jpeg".to_string() )); } // process scan n elements in order // Do the error checking with allocs here. // Make the one in the inner loop free of allocations. for k in 0..self.num_scans { let n = self.z_order[k as usize]; if n >= self.components.len() { return Err(DecodeErrors::Format(format!( "Cannot find component {n}, corrupt image" ))); } let component = &mut self.components[n]; let _ = self .dc_huffman_tables .get(component.dc_huff_table) .ok_or_else(|| { DecodeErrors::Format(format!( "No huffman table for component:{}", component.dc_huff_table )) })? .as_ref() .ok_or_else(|| { DecodeErrors::Format(format!( "Huffman table at index {} not initialized", component.dc_huff_table )) })?; } // Interleaved scan // Components shall not be interleaved in progressive mode, except for // the DC coefficients in the first scan for each component of a progressive frame. for i in 0..self.mcu_y { for j in 0..self.mcu_x { // process scan n elements in order for k in 0..self.num_scans { let n = self.z_order[k as usize]; let component = &mut self.components[n]; let huff_table = self .dc_huffman_tables .get(component.dc_huff_table) .ok_or(DecodeErrors::FormatStatic("No huffman table for component"))? .as_ref() .ok_or(DecodeErrors::FormatStatic( "Huffman table at index not initialized" ))?; for v_samp in 0..component.vertical_sample { for h_samp in 0..component.horizontal_sample { let x2 = j * component.horizontal_sample + h_samp; let y2 = i * component.vertical_sample + v_samp; let position = 64 * (x2 + y2 * component.width_stride / 8); let data = &mut buffer[n][position]; if self.succ_high == 0 { stream.decode_prog_dc_first( &mut self.stream, huff_table, data, &mut component.dc_pred )?; } else { stream.decode_prog_dc_refine(&mut self.stream, data)?; } } } } // We want wrapping subtraction here because it means // we get a higher number in the case this underflows self.todo = self.todo.wrapping_sub(1); // after every scan that's a mcu, count down restart markers. if self.todo == 0 { self.handle_rst(stream)?; } } } } return Ok(()); } #[allow(clippy::too_many_lines)] #[allow(clippy::needless_range_loop, clippy::cast_sign_loss)] fn finish_progressive_decoding( &mut self, block: &[Vec; MAX_COMPONENTS], _mcu_width: usize, pixels: &mut [u8] ) -> Result<(), DecodeErrors> { // This function is complicated because we need to replicate // the function in mcu.rs // // The advantage is that we do very little allocation and very lot // channel reusing. // The trick is to notice that we repeat the same procedure per MCU // width. // // So we can set it up that we only allocate temporary storage large enough // to store a single mcu width, then reuse it per invocation. // // This is advantageous to us. // // Remember we need to have the whole MCU buffer so we store 3 unprocessed // channels in memory, and then we allocate the whole output buffer in memory, both of // which are huge. // // let mcu_height = if self.is_interleaved { self.mcu_y } else { // For non-interleaved images( (1*1) subsampling) // number of MCU's are the widths (+7 to account for paddings) divided by 8. ((self.info.height + 7) / 8) as usize }; // Size of our output image(width*height) let is_hv = usize::from(self.sub_sample_ratio == SampleRatios::HV); let upsampler_scratch_size = is_hv * self.components[0].width_stride; let width = usize::from(self.info.width); let padded_width = calculate_padded_width(width, self.sub_sample_ratio); //let mut pixels = vec![0; capacity * out_colorspace_components]; let mut upsampler_scratch_space = vec![0; upsampler_scratch_size]; let mut tmp = [0_i32; DCT_BLOCK]; for (pos, comp) in self.components.iter_mut().enumerate() { // Allocate only needed components. // // For special colorspaces i.e YCCK and CMYK, just allocate all of the needed // components. if min( self.options.jpeg_get_out_colorspace().num_components() - 1, pos ) == pos || self.input_colorspace == ColorSpace::YCCK || self.input_colorspace == ColorSpace::CMYK { // allocate enough space to hold a whole MCU width // this means we should take into account sampling ratios // `*8` is because each MCU spans 8 widths. let len = comp.width_stride * comp.vertical_sample * 8; comp.needed = true; comp.raw_coeff = vec![0; len]; } else { comp.needed = false; } } let mut pixels_written = 0; // dequantize, idct and color convert. for i in 0..mcu_height { 'component: for (position, component) in &mut self.components.iter_mut().enumerate() { if !component.needed { continue 'component; } let qt_table = &component.quantization_table; // step is the number of pixels this iteration wil be handling // Given by the number of mcu's height and the length of the component block // Since the component block contains the whole channel as raw pixels // we this evenly divides the pixels into MCU blocks // // For interleaved images, this gives us the exact pixels comprising a whole MCU // block let step = block[position].len() / mcu_height; // where we will be reading our pixels from. let start = i * step; let slice = &block[position][start..start + step]; let temp_channel = &mut component.raw_coeff; // The next logical step is to iterate width wise. // To figure out how many pixels we iterate by we use effective pixels // Given to us by component.x // iterate per effective pixels. let mcu_x = component.width_stride / 8; // iterate per every vertical sample. for k in 0..component.vertical_sample { for j in 0..mcu_x { // after writing a single stride, we need to skip 8 rows. // This does the row calculation let width_stride = k * 8 * component.width_stride; let start = j * 64 + width_stride; // dequantize for ((x, out), qt_val) in slice[start..start + 64] .iter() .zip(tmp.iter_mut()) .zip(qt_table.iter()) { *out = i32::from(*x) * qt_val; } // determine where to write. let sl = &mut temp_channel[component.idct_pos..]; component.idct_pos += 8; // tmp now contains a dequantized block so idct it (self.idct_func)(&mut tmp, sl, component.width_stride); } // after every write of 8, skip 7 since idct write stride wise 8 times. // // Remember each MCU is 8x8 block, so each idct will write 8 strides into // sl // // and component.idct_pos is one stride long component.idct_pos += 7 * component.width_stride; } component.idct_pos = 0; } // process that width up until it's impossible self.post_process( pixels, i, mcu_height, width, padded_width, &mut pixels_written, &mut upsampler_scratch_space )?; } debug!("Finished decoding image"); return Ok(()); } pub(crate) fn reset_params(&mut self) { /* Apparently, grayscale images which can be down sampled exists, which is weird in the sense that it has one component Y, which is not usually down sampled. This means some calculations will be wrong, so for that we explicitly reset params for such occurrences, warn and reset the image info to appear as if it were a non-sampled image to ensure decoding works */ self.h_max = 1; self.options = self.options.jpeg_set_out_colorspace(ColorSpace::Luma); self.v_max = 1; self.sub_sample_ratio = SampleRatios::None; self.is_interleaved = false; self.components[0].vertical_sample = 1; self.components[0].width_stride = (((self.info.width as usize) + 7) / 8) * 8; self.components[0].horizontal_sample = 1; } } ///Get a marker from the bit-stream. /// /// This reads until it gets a marker or end of file is encountered fn get_marker( reader: &mut ZByteReader, stream: &mut BitStream ) -> Result where T: ZReaderTrait { if let Some(marker) = stream.marker { stream.marker = None; return Ok(marker); } // read until we get a marker while !reader.eof() { let marker = reader.get_u8_err()?; if marker == 255 { let mut r = reader.get_u8_err()?; // 0xFF 0XFF(some images may be like that) while r == 0xFF { r = reader.get_u8_err()?; } if r != 0 { return Marker::from_u8(r) .ok_or_else(|| DecodeErrors::Format(format!("Unknown marker 0xFF{r:X}"))); } } } return Err(DecodeErrors::ExhaustedData); }