# -*- coding: utf-8 -*- # Copyright © 2009/2021 Andrey Vlasovskikh # # Permission is hereby granted, free of charge, to any person obtaining a copy of this # software and associated documentation files (the "Software"), to deal in the Software # without restriction, including without limitation the rights to use, copy, modify, # merge, publish, distribute, sublicense, and/or sell copies of the Software, and to # permit persons to whom the Software is furnished to do so, subject to the following # conditions: # # The above copyright notice and this permission notice shall be included in all copies # or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, # INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A # PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT # HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF # CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE # OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """Functional parsing combinators. Parsing combinators define an internal domain-specific language (DSL) for describing the parsing rules of a grammar. The DSL allows you to start with a few primitive parsers, then combine your parsers to get more complex ones, and finally cover the whole grammar you want to parse. The structure of the language: * Class `Parser` * All the primitives and combinators of the language return `Parser` objects * It defines the main `Parser.parse(tokens)` method * Primitive parsers * `tok(type, value)`, `a(value)`, `some(pred)`, `forward_decl()`, `finished` * Parser combinators * `p1 + p2`, `p1 | p2`, `p >> f`, `-p`, `maybe(p)`, `many(p)`, `oneplus(p)`, `skip(p)` * Abstraction * Use regular Python variables `p = ... # Expression of type Parser` to define new rules (non-terminals) of your grammar Every time you apply one of the combinators, you get a new `Parser` object. In other words, the set of `Parser` objects is closed under the means of combination. !!! Note We took the parsing combinators language from the book [Introduction to Functional Programming][1] and translated it from ML into Python. [1]: https://www.cl.cam.ac.uk/teaching/Lectures/funprog-jrh-1996/ """ from __future__ import unicode_literals __all__ = [ "some", "a", "tok", "many", "pure", "finished", "maybe", "skip", "oneplus", "forward_decl", "NoParseError", "Parser", ] import sys import logging import warnings from lint_lib._vendor.funcparserlib.lexer import Token log = logging.getLogger("funcparserlib") debug = False if sys.version_info < (3,): string_types = (str, unicode) # noqa else: string_types = str class Parser(object): """A parser object that can parse a sequence of tokens or can be combined with other parsers using `+`, `|`, `>>`, `many()`, and other parsing combinators. Type: `Parser[A, B]` The generic variables in the type are: `A` — the type of the tokens in the sequence to parse,`B` — the type of the parsed value. In order to define a parser for your grammar: 1. You start with primitive parsers by calling `a(value)`, `some(pred)`, `forward_decl()`, `finished` 2. You use parsing combinators `p1 + p2`, `p1 | p2`, `p >> f`, `many(p)`, and others to combine parsers into a more complex parser 3. You can assign complex parsers to variables to define names that correspond to the rules of your grammar !!! Note The constructor `Parser.__init__()` is considered **internal** and may be changed in future versions. Use primitive parsers and parsing combinators to construct new parsers. """ def __init__(self, p): """Wrap the parser function `p` into a `Parser` object.""" self.name = "" self.define(p) def named(self, name): # noinspection GrazieInspection """Specify the name of the parser for easier debugging. Type: `(str) -> Parser[A, B]` This name is used in the debug-level parsing log. You can also get it via the `Parser.name` attribute. Examples: ```pycon >>> expr = (a("x") + a("y")).named("expr") >>> expr.name 'expr' ``` ```pycon >>> expr = a("x") + a("y") >>> expr.name "('x', 'y')" ``` """ self.name = name return self def define(self, p): """Define the parser created earlier as a forward declaration. Type: `(Parser[A, B]) -> None` Use `p = forward_decl()` in combination with `p.define(...)` to define recursive parsers. See the examples in the docs for `forward_decl()`. """ f = getattr(p, "run", p) if debug: setattr(self, "_run", f) else: setattr(self, "run", f) self.named(getattr(p, "name", p.__doc__)) def run(self, tokens, s): """Run the parser against the tokens with the specified parsing state. Type: `(Sequence[A], State) -> Tuple[B, State]` The parsing state includes the current position in the sequence being parsed, and the position of the rightmost token that has been consumed while parsing for better error messages. If the parser fails to parse the tokens, it raises `NoParseError`. !!! Warning This is method is **internal** and may be changed in future versions. Use `Parser.parse(tokens)` instead and let the parser object take care of updating the parsing state. """ if debug: log.debug("trying %s" % self.name) return self._run(tokens, s) # noqa def _run(self, tokens, s): raise NotImplementedError("you must define() a parser") def parse(self, tokens): """Parse the sequence of tokens and return the parsed value. Type: `(Sequence[A]) -> B` It takes a sequence of tokens of arbitrary type `A` and returns the parsed value of arbitrary type `B`. If the parser fails to parse the tokens, it raises `NoParseError`. !!! Note Although `Parser.parse()` can parse sequences of any objects (including `str` which is a sequence of `str` chars), **the recommended way** is parsing sequences of `Token` objects. You **should** use a regexp-based tokenizer `make_tokenizer()` defined in `funcparserlib.lexer` to convert your text into a sequence of `Token` objects before parsing it. You will get more readable parsing error messages (as `Token` objects contain their position in the source file) and good separation of the lexical and syntactic levels of the grammar. """ try: (tree, _) = self.run(tokens, State(0, 0, None)) return tree except NoParseError as e: max = e.state.max if len(tokens) > max: t = tokens[max] if isinstance(t, Token): if t.start is None or t.end is None: loc = "" else: s_line, s_pos = t.start e_line, e_pos = t.end loc = "%d,%d-%d,%d: " % (s_line, s_pos, e_line, e_pos) msg = "%s%s: %r" % (loc, e.msg, t.value) elif isinstance(t, string_types): msg = "%s: %r" % (e.msg, t) else: msg = "%s: %s" % (e.msg, t) else: msg = "got unexpected end of input" if e.state.parser is not None: msg = "%s, expected: %s" % (msg, e.state.parser.name) e.msg = msg raise def __add__(self, other): """Sequential combination of parsers. It runs this parser, then the other parser. The return value of the resulting parser is a tuple of each parsed value in the sum of parsers. We merge all parsing results of `p1 + p2 + ... + pN` into a single tuple. It means that the parsing result may be a 2-tuple, a 3-tuple, a 4-tuple, etc. of parsed values. You avoid this by transforming the parsed pair into a new value using the `>>` combinator. You can also skip some parsing results in the resulting parsers by using `-p` or `skip(p)` for some parsers in your sum of parsers. It means that the parsing result might be a single value, not a tuple of parsed values. See the docs for `Parser.__neg__()` for more examples. Overloaded types (lots of them to provide stricter checking for the quite dynamic return type of this method): * `(self: Parser[A, B], _IgnoredParser[A]) -> Parser[A, B]` * `(self: Parser[A, B], Parser[A, C]) -> _TupleParser[A, Tuple[B, C]]` * `(self: _TupleParser[A, B], _IgnoredParser[A]) -> _TupleParser[A, B]` * `(self: _TupleParser[A, B], Parser[A, Any]) -> Parser[A, Any]` * `(self: _IgnoredParser[A], _IgnoredParser[A]) -> _IgnoredParser[A]` * `(self: _IgnoredParser[A], Parser[A, C]) -> Parser[A, C]` Examples: ```pycon >>> expr = a("x") + a("y") >>> expr.parse("xy") ('x', 'y') ``` ```pycon >>> expr = a("x") + a("y") + a("z") >>> expr.parse("xyz") ('x', 'y', 'z') ``` ```pycon >>> expr = a("x") + a("y") >>> expr.parse("xz") Traceback (most recent call last): ... parser.NoParseError: got unexpected token: 'z', expected: 'y' ``` """ def magic(v1, v2): if isinstance(v1, _Tuple): return _Tuple(v1 + (v2,)) else: return _Tuple((v1, v2)) @_TupleParser def _add(tokens, s): (v1, s2) = self.run(tokens, s) (v2, s3) = other.run(tokens, s2) return magic(v1, v2), s3 @Parser def ignored_right(tokens, s): v, s2 = self.run(tokens, s) _, s3 = other.run(tokens, s2) return v, s3 name = "(%s, %s)" % (self.name, other.name) if isinstance(other, _IgnoredParser): return ignored_right.named(name) else: return _add.named(name) def __or__(self, other): """Choice combination of parsers. It runs this parser and returns its result. If the parser fails, it runs the other parser. Examples: ```pycon >>> expr = a("x") | a("y") >>> expr.parse("x") 'x' >>> expr.parse("y") 'y' >>> expr.parse("z") Traceback (most recent call last): ... parser.NoParseError: got unexpected token: 'z', expected: 'x' or 'y' ``` """ @Parser def _or(tokens, s): try: return self.run(tokens, s) except NoParseError as e: state = e.state try: return other.run(tokens, State(s.pos, state.max, state.parser)) except NoParseError as e: if s.pos == e.state.max: e.state = State(e.state.pos, e.state.max, _or) raise _or.name = "%s or %s" % (self.name, other.name) return _or def __rshift__(self, f): """Transform the parsing result by applying the specified function. Type: `(Callable[[B], C]) -> Parser[A, C]` You can use it for transforming the parsed value into another value before including it into the parse tree (the AST). Examples: ```pycon >>> def make_canonical_name(s): ... return s.lower() >>> expr = (a("D") | a("d")) >> make_canonical_name >>> expr.parse("D") 'd' >>> expr.parse("d") 'd' ``` """ @Parser def _shift(tokens, s): (v, s2) = self.run(tokens, s) return f(v), s2 return _shift.named(self.name) def bind(self, f): """Bind the parser to a monadic function that returns a new parser. Type: `(Callable[[B], Parser[A, C]]) -> Parser[A, C]` Also known as `>>=` in Haskell. !!! Note You can parse any context-free grammar without resorting to `bind`. Due to its poor performance please use it only when you really need it. """ @Parser def _bind(tokens, s): (v, s2) = self.run(tokens, s) return f(v).run(tokens, s2) _bind.name = "(%s >>=)" % (self.name,) return _bind def __neg__(self): """Return a parser that parses the same tokens, but its parsing result is ignored by the sequential `+` combinator. Type: `(Parser[A, B]) -> _IgnoredParser[A]` You can use it for throwing away elements of concrete syntax (e.g. `","`, `";"`). Examples: ```pycon >>> expr = -a("x") + a("y") >>> expr.parse("xy") 'y' ``` ```pycon >>> expr = a("x") + -a("y") >>> expr.parse("xy") 'x' ``` ```pycon >>> expr = a("x") + -a("y") + a("z") >>> expr.parse("xyz") ('x', 'z') ``` ```pycon >>> expr = -a("x") + a("y") + -a("z") >>> expr.parse("xyz") 'y' ``` ```pycon >>> expr = -a("x") + a("y") >>> expr.parse("yz") Traceback (most recent call last): ... parser.NoParseError: got unexpected token: 'y', expected: 'x' ``` ```pycon >>> expr = a("x") + -a("y") >>> expr.parse("xz") Traceback (most recent call last): ... parser.NoParseError: got unexpected token: 'z', expected: 'y' ``` !!! Note You **should not** pass the resulting parser to any combinators other than `+`. You **should** have at least one non-skipped value in your `p1 + p2 + ... + pN`. The parsed value of `-p` is an **internal** `_Ignored` object, not intended for actual use. """ return _IgnoredParser(self) def __class_getitem__(cls, key): return cls class State(object): """Parsing state that is maintained basically for error reporting. It consists of the current position `pos` in the sequence being parsed, and the position `max` of the rightmost token that has been consumed while parsing. """ def __init__(self, pos, max, parser=None): self.pos = pos self.max = max self.parser = parser def __str__(self): return str((self.pos, self.max)) def __repr__(self): return "State(%r, %r)" % (self.pos, self.max) class NoParseError(Exception): def __init__(self, msg, state): self.msg = msg self.state = state def __str__(self): return self.msg class _Tuple(tuple): pass class _TupleParser(Parser): pass class _Ignored(object): def __init__(self, value): self.value = value def __repr__(self): return "_Ignored(%s)" % repr(self.value) def __eq__(self, other): return isinstance(other, _Ignored) and self.value == other.value @Parser def finished(tokens, s): """A parser that throws an exception if there are any unparsed tokens left in the sequence.""" if s.pos >= len(tokens): return None, s else: s2 = State(s.pos, s.max, finished if s.pos == s.max else s.parser) raise NoParseError("got unexpected token", s2) finished.name = "end of input" def many(p): """Return a parser that applies the parser `p` as many times as it succeeds at parsing the tokens. Return a parser that infinitely applies the parser `p` to the input sequence of tokens as long as it successfully parses them. The parsed value is a list of the sequentially parsed values. Examples: ```pycon >>> expr = many(a("x")) >>> expr.parse("x") ['x'] >>> expr.parse("xx") ['x', 'x'] >>> expr.parse("xxxy") # noqa ['x', 'x', 'x'] >>> expr.parse("y") [] ``` """ @Parser def _many(tokens, s): res = [] try: while True: (v, s) = p.run(tokens, s) res.append(v) except NoParseError as e: s2 = State(s.pos, e.state.max, e.state.parser) if debug: log.debug( "*matched* %d instances of %s, new state = %s" % (len(res), _many.name, s2) ) return res, s2 _many.name = "{ %s }" % p.name return _many def some(pred): """Return a parser that parses a token if it satisfies the predicate `pred`. Type: `(Callable[[A], bool]) -> Parser[A, A]` Examples: ```pycon >>> expr = some(lambda s: s.isalpha()).named('alpha') >>> expr.parse("x") 'x' >>> expr.parse("y") 'y' >>> expr.parse("1") Traceback (most recent call last): ... parser.NoParseError: got unexpected token: '1', expected: alpha ``` !!! Warning The `some()` combinator is quite slow and may be changed or removed in future versions. If you need a parser for a token by its type (e.g. any identifier) and maybe its value, use `tok(type[, value])` instead. You should use `make_tokenizer()` from `funcparserlib.lexer` to tokenize your text first. """ @Parser def _some(tokens, s): if s.pos >= len(tokens): s2 = State(s.pos, s.max, _some if s.pos == s.max else s.parser) raise NoParseError("got unexpected end of input", s2) else: t = tokens[s.pos] if pred(t): pos = s.pos + 1 s2 = State(pos, max(pos, s.max), s.parser) if debug: log.debug("*matched* %r, new state = %s" % (t, s2)) return t, s2 else: s2 = State(s.pos, s.max, _some if s.pos == s.max else s.parser) if debug: log.debug( "failed %r, state = %s, expected = %s" % (t, s2, s2.parser.name) ) raise NoParseError("got unexpected token", s2) _some.name = "some(...)" return _some def a(value): """Return a parser that parses a token if it's equal to `value`. Type: `(A) -> Parser[A, A]` Examples: ```pycon >>> expr = a("x") >>> expr.parse("x") 'x' >>> expr.parse("y") Traceback (most recent call last): ... parser.NoParseError: got unexpected token: 'y', expected: 'x' ``` !!! Note Although `Parser.parse()` can parse sequences of any objects (including `str` which is a sequence of `str` chars), **the recommended way** is parsing sequences of `Token` objects. You **should** use a regexp-based tokenizer `make_tokenizer()` defined in `funcparserlib.lexer` to convert your text into a sequence of `Token` objects before parsing it. You will get more readable parsing error messages (as `Token` objects contain their position in the source file) and good separation of the lexical and syntactic levels of the grammar. """ name = getattr(value, "name", value) return some(lambda t: t == value).named(repr(name)) def tok(type, value=None): """Return a parser that parses a `Token` and returns the string value of the token. Type: `(str, Optional[str]) -> Parser[Token, str]` You can match any token of the specified `type` or you can match a specific token by its `type` and `value`. Examples: ```pycon >>> expr = tok("expr") >>> expr.parse([Token("expr", "foo")]) 'foo' >>> expr.parse([Token("expr", "bar")]) 'bar' >>> expr.parse([Token("op", "=")]) Traceback (most recent call last): ... parser.NoParseError: got unexpected token: '=', expected: expr ``` ```pycon >>> expr = tok("op", "=") >>> expr.parse([Token("op", "=")]) '=' >>> expr.parse([Token("op", "+")]) Traceback (most recent call last): ... parser.NoParseError: got unexpected token: '+', expected: '=' ``` !!! Note In order to convert your text to parse into a sequence of `Token` objects, use a regexp-based tokenizer `make_tokenizer()` defined in `funcparserlib.lexer`. You will get more readable parsing error messages (as `Token` objects contain their position in the source file) and good separation of the lexical and syntactic levels of the grammar. """ if value is not None: p = a(Token(type, value)) else: p = some(lambda t: t.type == type).named(type) return (p >> (lambda t: t.value)).named(p.name) def pure(x): """Wrap any object into a parser. Type: `(A) -> Parser[A, A]` A pure parser doesn't touch the tokens sequence, it just returns its pure `x` value. Also known as `return` in Haskell. """ @Parser def _pure(_, s): return x, s _pure.name = "(pure %r)" % (x,) return _pure def maybe(p): """Return a parser that returns `None` if the parser `p` fails. Examples: ```pycon >>> expr = maybe(a("x")) >>> expr.parse("x") 'x' >>> expr.parse("y") is None True ``` """ return (p | pure(None)).named("[ %s ]" % (p.name,)) def skip(p): """An alias for `-p`. See also the docs for `Parser.__neg__()`. """ return -p class _IgnoredParser(Parser): def __init__(self, p): super(_IgnoredParser, self).__init__(p) run = self._run if debug else self.run def ignored(tokens, s): v, s2 = run(tokens, s) return v if isinstance(v, _Ignored) else _Ignored(v), s2 self.define(ignored) self.name = getattr(p, "name", p.__doc__) def __add__(self, other): def ignored_left(tokens, s): _, s2 = self.run(tokens, s) v, s3 = other.run(tokens, s2) return v, s3 if isinstance(other, _IgnoredParser): return _IgnoredParser(ignored_left).named( "(%s, %s)" % (self.name, other.name) ) else: return Parser(ignored_left).named("(%s, %s)" % (self.name, other.name)) def oneplus(p): """Return a parser that applies the parser `p` one or more times. A similar parser combinator `many(p)` means apply `p` zero or more times, whereas `oneplus(p)` means apply `p` one or more times. Examples: ```pycon >>> expr = oneplus(a("x")) >>> expr.parse("x") ['x'] >>> expr.parse("xx") ['x', 'x'] >>> expr.parse("y") Traceback (most recent call last): ... parser.NoParseError: got unexpected token: 'y', expected: 'x' ``` """ @Parser def _oneplus(tokens, s): (v1, s2) = p.run(tokens, s) (v2, s3) = many(p).run(tokens, s2) return [v1] + v2, s3 _oneplus.name = "(%s, { %s })" % (p.name, p.name) return _oneplus def with_forward_decls(suspension): warnings.warn( "Use forward_decl() instead:\n" "\n" " p = forward_decl()\n" " ...\n" " p.define(parser_value)\n", DeprecationWarning, ) @Parser def f(tokens, s): return suspension().run(tokens, s) return f def forward_decl(): """Return an undefined parser that can be used as a forward declaration. Type: `Parser[Any, Any]` Use `p = forward_decl()` in combination with `p.define(...)` to define recursive parsers. Examples: ```pycon >>> expr = forward_decl() >>> expr.define(a("x") + maybe(expr) + a("y")) >>> expr.parse("xxyy") # noqa ('x', ('x', None, 'y'), 'y') >>> expr.parse("xxy") Traceback (most recent call last): ... parser.NoParseError: got unexpected end of input, expected: 'y' ``` !!! Note If you care about static types, you should add a type hint for your forward declaration, so that your type checker can check types in `p.define(...)` later: ```python p: Parser[str, int] = forward_decl() p.define(a("x")) # Type checker error p.define(a("1") >> int) # OK ``` """ @Parser def f(_tokens, _s): raise NotImplementedError("you must define() a forward_decl somewhere") f.name = "forward_decl()" return f if __name__ == "__main__": import doctest doctest.testmod()