\mathbb{A}
𝔸
U+1D538
\mathbb{C}
\Complex
ℂ
U+2102
\mathbb{H}
ℍ
U+210D
\mathbb{N}
\N
ℕ
U+2115
\mathbb{O}
𝕆
U+1D546
\mathbb{Q}
\Q
ℚ
U+211A
\mathbb{R}
\R
\Reals
ℝ
U+211D
\mathbb{S}
𝕊
U+1D54A
\mathbb{Z}
\Z
ℤ
U+2124
\pi
π
{{pi}}
U+03C0
e
\mathrm{e}
U+0065
{{mvar|e}}
{{math|e}}
\phi
φ
{{phi}}
U+03C6
\varphi
ϕ
{{varphi}}
U+03D5
i
\mathrm{i}
U+0069
{{mvar|i}}
{{math|i}}
\gamma
γ
{{gamma}}
U+03B3
\epsilon
ε
{{epsilon}}
U+03B5
\varepsilon
ϵ
{{varepsilon}}
U+03F5
\theta
θ
{{theta}}
U+03B8
\vartheta
ϑ
{{vartheta}}
U+03D1
\sigma
σ
{{sigma}}
U+03C3
\varsigma
ς
{{varsigma}}
U+03C2
\kappa
κ
{{kappa}}
U+03BA
\lambda
λ
{{lambda}}
U+03BB
\mu
μ
{{mu}}
U+03BC
\tau
τ
{{tau}}
U+03C4
\Im
ℑ
U+2111
\operatorname{Im}
Im
\Re
ℜ
U+211C
\operatorname{Re}
Re
\bar
̄
U+0304
\bar{\bar{}}
̄̄
\overline
̅
U+0305
\overline{\overline{}}
̅̅
{}^\ast
*
U+002A
\vert
|
U+007C
\arg
+
+
U+002B
-
−
U+2212
\cdot
⋅
U+22C5
\times
×
U+2A2F
:
\colon
∶
:
U+003A
U+2236
/
∕
U+2215
\div
÷
U+00F7
\frac{a}{b}
\tfrac{a}{b}
\dfrac{a}{b}
\cfrac{a}{b}
⁄
U+2044
<sup>a</sup>⁄<sub>b</sub>
^{-1}
U+207B
\pm
±
U+00B1
\mp
∓
U+2213
\sqrt{}
√
U+221A
\sqrt[3]{x}
&x221B;
U+221B
\sqrt[4]{x}
&x221C;
U+221C
\sqrt[n]{}
\%
%
U+0025
(
)
(
)
U+0028/9
\left( \right)
[
]
[
]
U+005B/D
|
\{
\}
\lbrace
\rbrace
{
}
U+007B/D
\lceil
\rceil
⌈
⌉
U+2308/9
\lfloor
\rfloor
⌊
⌋
U+230A/B
\ulcorner
\urcorner
⌜
⌝
U+231C/D
\llcorner
\lrcorner
⌞
⌟
U+231E/F
\frown
⌢
U+2322
\smile
⌣
U+2323
\exp
exp
\log
\log_{}
log
log<sub></sub>
\ln
ln
\lg
lg
\min
min
\max
max
\inf
inf
\sup
sup
\liminf
liminf
\varliminf
<u>lim</u>
\limsup
limsup
\varlimsup
<span style="text-decoration:overline;">lim</span>
\gcd
gcd
Note: the power function is not represented by its own icon, but by the positioning of the exponent as a superscript.
\sin
sin
\cos
cos
\tan
tan
\sec
sec
\csc
csc
\cot
cot
\arcsin
arcsin
\arccos
arccos
\arctan
arctan
\arcsec
arcsec
\arccsc
arccsc
\arccot
arccot
\sinh
sinh
\cosh
cosh
\tanh
tanh
\coth
coth
<
<
U+003C
>
>
U+003E
\le
\leq
≤
U+2264
\ge
\geq
≥
U+2265
\leqq
≦
U+2266
\geqq
≧
U+2267
\leqslant
&LessSlantEqual
U+2A7D
\geqslant
&GreaterSlantEqual
U+2A7E
\ll
≪
U+226A
\gg
≫
U+226B
\lesssim
≲
U+2272
\gtrsim
≳
U+2273
\lessapprox
⪅
U+2A85
\gtrapprox
⪆
U+2A86
\lessgtr
&LessGreater
U+2276
\gtrless
≷
U+2277
\lesseqgtr
⋚
U+22DA
\gtreqless
⋛
U+22DB
\lesseqqgtr
⪋
U+2A8B
\gtreqqless
⪌
U+2A8C
\mid
∣
U+2223
\nmid
∤
U+2224
\perp
⊥
U+22A5
\sqcap
⊓
U+2293
\wedge
∧
U+2227
\sqcup
⊔
U+2294
\vee
∨
U+2228
\equiv
≡
U+2261
\mod m
mod
<math>\mod</math>
\pmod m
(mod)
<math>\pmod</math>
!
!
U+0021
\binom
\underline
̲
U+0332
\#
#
U+0023
P
U+2119
E
𝔼
U+1D53C
V
𝕍
U+1D54D
\rho
ρ
U+03C1
\sim
∼
U+223C
\approx
≈
U+2248
\langle \rangle
⟨
⟩
U+27E8/9
\hat
̂
U+0302
\sum
∑
U+2211
\prod
∏
U+220F
\coprod
∐
U+2210
( )
\to
\rarr
→
U+2192
\infty
∞
U+221E
\rightarrow
→
\longrightarrow
⟶
U+27F6
\uparrow
↑
↑
U+2191
\nearrow
↗
U+2197
\searrow
↘
U+2198
\downarrow
↓
↓
U+2193
\swarrow
↙
U+2199
\leftarrow
←
←
U+2190
\longleftarrow
⟵
U+27F5
\nwarrow
↖
U+2196
^+
⁺
U+207A
^-
⁻
\lim
'
^\prime
′
U+2032
''
^{\prime\prime}
″
U+2033
'''
^{\prime\prime\prime}
‴
U+2034
''''
^{\prime\prime\prime\prime}
⁗
U+2057
^{IV}
^V
^{VI}
<sup>IV</sup>
^{iv}
^v
^{vi}
<sup>iv</sup>
^{( )}
<sup>( )</sup>
U+207D/E
\dot
̇
U+0307
\ddot
̈
U+0308
d
U+0064
\partial
∂
U+2202
\left. \frac{\partial }{\partial x} \right\vert_x
\int
∫
U+222B
\iint
∬
U+222C
\iiint
∭
U+222D
\oint
∮
U+222E
\oiint
∯
U+222F
\oiiint
∰
U+2230
\nabla
∇
U+2207
\Delta
Δ
U+2206
\square
□
U+25A1
o
U+006F
\mathcal{O}
𝒪
U+1D4AA
\Theta
Θ
U+0398
\Omega
Ω
U+03A9
\omega
ω
U+03C9
Inner product space
[ ]
\otimes
⊗
U+2297
\Vert
\|
\lVert
\rVert
‖
U+2016
\hat{}
̂
\circ
∘
U+2218
\oslash
⊘
U+2298
*
^\intercal
⊺
U+22BA
^\top
⊤
U+22A4
^{\mathrm T}
U+0054
^\ast
^\dagger
†
U+2020
^H
U+0048
\det
det
Linear subspace
\oplus
⊕
U+2295
U+002F
^\perp
U+27C2
∗
^0
U+0030
\langle
\rangle
\dim
dim
\ker
ker
\Pr
Pr
U+2032/3
\hookrightarrow
U+21AA
The current Wikipedia guidelines advise against unnecessary use of ∀, ∃, and ⇔ and instead recommend writing out "for all", "there exists", and "if and only if." The same is true of abbreviations such as "iff", "s.t.", and "WLOG".
=
=
U+003D
\neq
\ne
\not=
≠
U+2260
\propto
∝
U+221D
\widehat{=}
≙
U+2259
\overset{?}{=}
≟
U+225F
\overset{\operatorname{def}}{=}
≝
U+225D
\triangleq
≜
U+225C
:=
≔
U+2254
=:
≕
U+2255
\doteq
≐
U+2250
==
⩵
U+2A75
\land
\lor
\Leftrightarrow
⇔
U+21D4
\leftrightarrow
↔
U+2194
\iff
⟺
U+27FA
\Rightarrow
⇒
U+21D2
\implies
⟹
U+27F9
\Longrightarrow
\veebar
⊻
U+22BB
\dot\lor
U+2A52
\lnot
¬
U+00AC
\not
\not\in
̸
≠
∉
U+0338
\multimap
⊸
U+22B8
\upand
&x214B;
U+214B
\forall
∀
U+2200
\bigwedge
⋀
U+22C0
\exists
∃
U+2203
\bigvee
⋁
U+22C1
\exists!
∃!
\dot\bigvee
\nexists
∄
U+2204
\vdash
⊢
U+22A2
\models
⊨
U+22A8
\top
\bot
\therefore
∴
U+2234
\because
∵
U+2235
\blacksquare
■
U+25A0
\Box
□
∎
U+220E
[\![
]\!]
⟦
⟧
U+27E6/7
\mapsto
&mapstoright;
U+21A6
[
]
-1
∘
\ast
U+2217
\tilde{\rightarrow}
U+2972
↪
\twoheadrightarrow
↠
U+21A0
\hom
hom
⊕
U+00D7
lim
\projlim
projlim
\varprojlim
\injlim
injlim
\varinjlim
\varnothing
∅
∅
U+2205
\emptyset
\cap
∩
U+2229
\bigcap
⋂
⋂
U+22C2
\cup
∪
U+222A
\bigcup
⋃
⋃
U+22C3
\setminus
∖
∖
U+2216
\smallsetminus
\triangle
\ominus
⊖
U+2296
\dot\cap
⩀
U+2A40
\capwedge
⩄
U+2A44
\dot\cup
⊍
U+228D
\uplus
⊎
U+228E
\mlcp
⫛
U+2ADB
^\complement
∁
U+2201
^{\mathrm C}
\bar{}
\overline{}
\wp
℘
U+2118
\mathcal{P}
𝒫
U+1D4AB
\mathfrak{P}
𝔓
U+1D513
\bigwedge\limits_{}
\bigvee\limits_{}
\subset
⊂
U+2282
\subsetneq
⊊
U+228A
\subseteq
⊆
U+2286
\subsetcirc
⟃
U+27C3
\supset
⊃
U+2283
\supsetneq
⊋
U+228B
\supseteq
⊇
U+2287
\supsetcirc
⟄
U+27C4
\not\subset
⊄
U+2284
\not\supset
⊅
U+2285
\not\subseteq
⊈
U+2288
\not\supseteq
⊉
U+2289
\in
∈
U+2208
\ni
\owns
∋
U+220B
\notin
∉
U+2209
\not\ni
∌
U+220C
\sqsubset
⊏
U+228F
\sqsupset
⊐
U+2290
\sqsubseteq
⊑
U+2291
\sqsupseteq
⊒
U+2292
Note: The symbols ⊂ {\displaystyle \subset } and ⊃ {\displaystyle \supset } are used inconsistently and often do not exclude the equality of the two quantities.
\mathfrak{c}
𝔠
U+1D520
\aleph
ℵ
U+2135
\beth
ℶ
U+2136
/
∼
\backsim
∽
U+223D
\not\sim
\nsim
≁
U+2241
\eqsim
≂
U+2242
\simeq
≃
U+2243
\cong
≅
U+2245
\not\cong
\ncong
≇
U+2247
≤
≥
\nless
≮
≮
U+226E
\ngtr
≯
≯
U+226F
\not\leq
\nleq
≰
≰
U+2270
\not\geq
\ngeq
≱
≱
U+2271
≲
≳
\not\lesssim
≴
U+2274
\not\gtrsim
≵
U+2275
\prec
≺
U+227A
\succ
≻
U+227B
\preccurlyeq
≼
U+227C
\succcurlyeq
≽
U+227D
\precsim
≾
U+227E
\succsim
≿
U+227F
\preceq
⪯
U+2AAF
\succeq
⪰
U+2AB0
\curlyeqprec
⋞
U+22DE
\curlyeqsucc
⋟
U+22DF
⊏
⊐
⊑
⊒
\not\sqsubseteq
⋢
U+22E2
\not\sqsupseteq
⋣
U+22E3
;
;
U+003B
\bullet
•
U+2219
T
\bar{R}
≅
\rtimes
⋊
U+22CA
\wr
≀
U+2240
\lt
\vartriangleleft
⊳
U+22B3
\trianglelefteq
⊴
U+22B4
\not\vartriangleleft
⋪
U+22EA
\not\trianglelefteq
⋬
U+22EC
\vartriangleright
\trianglerighteq
⊵
U+22B5
\not\vartriangleright
⋫
U+22EB
\not\trianglerighteq
⋭
U+22ED
\mathbb{F}
𝔽
U+1D53D
\mathbb{K}
𝕂
U+1D542
⊲
U+22B2
[[ ]]
\deg
deg;
\left[ \right]
\vec
⃗
U+20D7
\angle
∠
U+2220
∡
U+2221
∟
U+221F
⦜
U+299C
⦟
U+299F
⦦
U+29A6
⦞
U+299E
\parallel
∥
U+2225
\nparallel
∦
U+2226
△
U+25B3
⊿
U+22BF
▭
U+25AD
⏢
U+23E2
▱
U+25B1
◊
U+25CA
⬠
U+2B20
⬡
U+2B21
⬢
U+2B22
○
U+25CB
●
U+25CF
\mathcal{L}
ℒ
U+2112
\mathbin{\lrcorner}
U+231F
\iota
𝜄
U+1D704
∧
°
U+02DA