(* Content-type: application/vnd.wolfram.mathematica *) (*** Wolfram Notebook File ***) (* http://www.wolfram.com/nb *) (* CreatedBy='Mathematica 11.1' *) (*CacheID: 234*) (* Internal cache information: NotebookFileLineBreakTest NotebookFileLineBreakTest NotebookDataPosition[ 158, 7] NotebookDataLength[ 36445, 820] NotebookOptionsPosition[ 31620, 700] NotebookOutlinePosition[ 32069, 716] CellTagsIndexPosition[ 32026, 713] WindowFrame->Normal*) (* Beginning of Notebook Content *) Notebook[{ Cell[CellGroupData[{ Cell["Test Notebook", "Title",ExpressionUUID->"1376908b-4a40-4de4-a53f-0d15d9a99a7b"], Cell["\<\ This is a simple test notebook. It features many different kind of cells.\ \>", "Text",ExpressionUUID->"19ea30eb-725d-4965-b150-04e4a979540a"], Cell[BoxData[ RowBox[{ RowBox[{"(*", " ", RowBox[{"Initialization", " ", "cell"}], " ", "*)"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"f", "[", "x_", "]"}], ":=", FractionBox[ RowBox[{"Sin", "[", "x", "]"}], "x"]}]}]], "Input", InitializationCell-> True,ExpressionUUID->"f9f2c72e-9519-4211-9e6e-4fbe0a1fb293"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"(*", " ", RowBox[{"Simple", " ", "input", " ", "cell"}], " ", "*)"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"Plot", "[", RowBox[{ FractionBox[ RowBox[{"Sin", "[", "x", "]"}], "x"], ",", RowBox[{"{", RowBox[{"x", ",", RowBox[{ RowBox[{"-", "4"}], "\[Pi]"}], ",", RowBox[{"4", "\[Pi]"}]}], "}"}]}], "]"}], "\[IndentingNewLine]", RowBox[{"Plot", "[", RowBox[{ FractionBox["1", RowBox[{"x", "-", "x"}]], ",", RowBox[{"{", RowBox[{"x", ",", RowBox[{"-", "2"}], ",", "2"}], "}"}]}], "]"}], "\[IndentingNewLine]", RowBox[{ "Print", "[", "\"\\"", "]"}]}]}]], "Input",Expre\ ssionUUID->"ce415ae6-d359-4181-aeab-042280ba951b"], Cell[BoxData[ FormBox[ GraphicsBox[{{{{}, {}, TagBox[ {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[1.], LineBox[CompressedData[" 1:eJwVl3k4Vd8Xxs3JfK8p00Xci5KICqmtDEUypZKkUhLKUKhQhqQBoSRKqq8x JPM172UerspclESJiKvMU37n99d53uc9Z+33s9dez7OPvKOHtRMbCwvLKCsL y/+fpiYCBsvyKjAmtGMQfjlV7SoKmOKmqMBMueTKkrQhVpUffy4mqQL9Bde8 22VtsMBi44IGWQU+G30K86aew+0ZwTkX2FTAJ7XpZ9ZWb2zLPSvRM6QMa8cv PjqLQrFz4+ep3GRleDPq+iHoYCy21TRNqnqhDO+yhpNgIhYfeFFysPWZMmjl PZkYinqMN119nDbySBmOpE8p1nfG4UmahT0lVBkCD1jllx1PwL5hNY3h55RB cO7WdWSfhEONXiedpypDi6+5vZpoCoZwP0tZeWXo+rjIuH0hBa+0H2T7JK0M 2K3H9nl5Cr7iMOlkIqIMr3o6HnKdScWOVzW3qLIrg5vFJaW4jDSMXleW//mm BN8SuBSsVF7jJb6OTwGJStC9b9980s83eMfh5Pvb45Xg+wspC66tOfhygrfe 5CMlMBJJzF/1zcG/qOIvT4UrQdQ8aTSO8y3+tMfeeZ+fEiiStEtSBXJxsefP 2XW2SuCsFJpYI5mHvbqWyI+EleCwz7vtv9fycZy1hV2soBLobrLsnJcowBVt ya8e8yqBfd4ZLdAswFzvzNTj2ZVABmla3D5fgBPrkw49n6bBd09Jv86mAtxU vO9ueicNJL8/pokHFeJJrScfMj7QwJ2R7Vv8uBALF4yLZTJosKv8/CberELs 8DY2NbuWBoc6szk7uwrxdPrPmrwCGjRuvlHdpliEKQn3V8sf0eA82cBGpbgI G4oPGFZG0UBHsC54oqEIuzzWjKgKp4Fv97o3pz8W4cKYL5LVt2gA3/3uWs8X YZP7atoNV2hwAD10tNMsxu7ctwIbPWiQu1MwLGJvMY4N+9jQ5EaDD3NPPrta FOOvIUFHGGdpoCro37rJtRh7+3dcbjtMg72L+7tynhXjp4u0snYLGux/MvxA J70Y46v+rJ0HaTB4c//ipfxizOOtGN1tQAMhv8L8jsZivPXvtY89iAZ81l4e bB3F2MbzHeXTLhpsXrKl930uxi8u+r7p06TB1wCP9luTxbhurGXm81YamJJE pGzmi/HYBVm9/s00SG5o/8pYK8ZaTk0tAwo02FBIa88VpGO779LkQVliPy9S g2XE6TjwjNfxISkasLIK5qhT6LjlpOToD2EatLNaRZlspmOLF3poSZAGC7uH vDQ06Ljrm0OcIB8NApILLtbsoGPbjcETitw0iNo9cHBlFx33n0021OWggSJf 7pev+nTsmFr/zIKFBi8VkidcjOj458+Rv+dWqBDcdMH8uQkduynzmPotUEHh zvCHa4foeMpF9VXUDBXC92sarljSsU+W+ULKFBXUT/53U8mGjpd+e1qU/aZC y8Oyw0tHifxqj9I+jFKBd5tegvdxOubwLFr98YMKzuvkaXEn6Phe3kebpW9U eHPmeYfDSToWmF7MEuynQgq//LX3DnT8UEuandpLhcBDtn9+nKJjcd89drrd VNjVqir532k6TqSfzrNop0JfRMMHzjN0LLcYwu30jgpu3RFTgoRO1U095ddM hSVRJXsg3t8U0FgcVU8FxLgxLUbot5W/+FOrCb6T5fHCRH2tNV6nskoqsC6a bS0m8pTqq1V8KKVCqfP3Z/+IvHtCLIWHi6hweeBK3W+Cp7b2sutSHhWo7drR Qcfo+ADn42rBHCq05+WPlBL70WpM30DNpMIlnFEYb0XHVnd7PXTTqBBUrTIk bU7HPc3LDRb/UeFCfYS9sSnRf14KxSmJCgd6vEiixnR87oFja1QcFQy9CkZe 6dHxrw+hCqkPqRCvXzt2aicdu5PS/coeUOHGQsV4DdH/q7HjysNhVHBoFi+9 SqXjlW7+oKUQKnBlPvBqJs5PkLj6R8FAKuirS7MAcb7uP/W+rXuVCqoGHGHP uOlY8EvcF4srVPCa+XUliIWOY2VKNZ08qLAzaVWRZ6EYP3+5OhjlTIWONZ1W 3p/FODctbM/wMSrs0yk43lRZjLePZjxeOkwFW7WQkE5ifspUGL8FLakQ+Wni zi1ivmqzBZ/pHiDOw6Eg846oYtyTHz8fpU2FR69OUFTti/GJmTLzVC0qHLaM 8j1lXoy/be9PLVOnQuLGVgltfWJ+SuRthpWpcKtoOqZ3YzFercrM1ZUg+lEy 1jjwvQi39m3lWxahgvG69SKd7UU4ca7QuVyICtKF6ZH2uAjrqWGKHjcVOLfP p29LKMJ+zzsjds8rwsWulh1T+4uwaant6OpfRRDg7H2RsK0IS3T3G1RNKoJZ UGtyn3QRLuEbXdrzUxGYXkePKk4V4jn/lQv63Yrw78bJ2i8xhbjhSXAdS7si HPRZO2xyvRA/LuCSq25VBL/s6LMWpwux1rjQx711isCxP1lEZUshvmJHNTIo UIRHHU9LJWsK8JS2ubxxjCLwx9/9rdebj8GmM4ArUhECeY4VOJXl4yhP208N d4m8B7U3bnmWj9UyHKP2BynCrUa5kIQT+fiS+NXVAx6KkLbluff0xzw8Nvui 9+AhRTBHmea8OBd/z/8TY7VeEU6F6gTqx2bjRK6lEDtORbgxobvplVE2PmrH 5n2WVREKOrHPlbks3MQqfNRnUQFmNb90eh7NwjmWWpIJvxSAm+d4wJhgJr42 6fvft2YFGPoXMI5d0jHfppV8j/sKcPxsS9YreIV3vOLqiuRVAD6LjnLntVCs t7FDLXxBHlxeRz+L0MtAL4V5tQ7PyMOhOfn+0ZwMxM5pqCM1JQ+u1h0rfPKv UctIkUHWiDzo7lHPSeHIRLZvEmwZPfKwqHC9+lNTFvLWPhPCWyQPXOE1V8MN 3qJs86nucC95uMjd5jm3mI+E9FU+H74kD3nXvHSythSgKxqO36Rc5KH69H/p CmcKkK5I11jWaXmYeOV360RjAWrqpa8xLOQh9f03zIguRD/OBarwqcmDNevf 211ixUjaX+BGxJgc7Nd4Rv86WoJcUlrEn/+Ug6TnnAtHhUpR8buw/DdDcqBs CYFBO0uRldzayPs+OUiwoN3+EVqKwuqZ1iSGHDiJ3Pb5IlWGmILtynFZhNY8 pczUKUd6OpG1aelyoOXUdlLJvhzddzRxoCfLQb2BWxXnzXKkWFT96NMzOUhW NrLLh3Jka5f/TzJCDqKcjFJK9lagmpRHXS8uygFZboQyplGJBN9beORekIPY QoG4neaVyH6el6f6nBy83fVPRN61Es2bhKIhezkw17zTWP+yEqkyvTMVD8mB F+lGpNH6KnR9g4bRdhM5eJe7o9lxYxVq2DsxYGQkB2nT3U7iu6rQ6VgnUefd ciDlLHXb0K0KPdY5GvR6ixxo37+zkNRQhYYcyVJlKnIwq172wflLFVKPeF/U QpUDbxf2t7V/qlDLV+PxcRk5+BaY77VNCqN/t3YeVROQg72yMnX9FzA6+GZ6 ag+PHLDYPo1S98covudtuAWXHPRju5PkSIzOW1uGDK7IwgZ2J7Hgtxi1JWrY nu+XhZ0c8eOrkxixpHjE9XfJQteh4ryZfxipZ73psmmVBZEDYRSNdYCiS1Ws DMploYS6kf5BFBCAc1RZvixI5ZqvFUsDmmpMfaeRKQtOHA9jbRUAWfbIm8ol yEKwNEdi81ZAQf2n7j6JlgXnLQnh8dsB5f543iBwVxYGSkRq5XYB+jb+mSMs UBZ042rZHfUBCU1LGKz6ykJN0pqgvREg/aVjwd7uhFbVyBIwBeTJGofHnWTh T1xbwnVzQG2CZL0+G1kwFnl09+pRQCziln5WZrLgNsIuzmMHSJ3yoKTJQBa0 Z4JEbU4COk1tnUO7ZMFMb/TQkdMEnyrPdvo2WRg+oh7Of5bg0zxwRW2TLMS/ c0kIcCL4dMPyUuVlYUcoGP3nDEhuXx1TWkIW5rhvONx0IXhN2NRihWSBzuQs EHIjeC31L/Jyy8JVhUHh4xcJ3mM3M0PWKPBJq8j62CWC16FidHGOAu0ppvt4 3Qne80s0r0kKHNscWexNaP1L2k6jwxSgLUWEPiK0p7dv8ql+CtxZDgxxJvRL /8LBni4KkPlr70wR9dpC/sqat1Lg4o7PF9UIzXJf3aG+lgJzn3155Yn11WPc E/XKKeA64b6nyZXgj8/uK8inwAmhpkEFIn/0i7ENmzMpkNhQ0KFJ8EGa8rH/ XlHgSnQMc/4cwf/m/GOJBAoU8UyJezoS/EUpndHRFEjjfqCaeIrgrxgicd+l QMLrE4IB9gR/rZxlYCCxnqt/suBxgr/F4cGcLwVStxm8O3qE4G9PbL3kToHz J3dftrIi+Hv7eIadKLBcqXJ9zYzg/7bBxP4kBWRe/ms+fYDgHzl6p9OGAuO1 vw75GBC8sx3sNQYU+DzQlUDXJnhXhfbp7KIA0jPXHd5G8HJYBOVuo8C0f0dV vSrBR2asJMlTQOjsjW0vZAk+ifW7xCQo4Gj0jz1+A8Ent/96pBAFLHfo3zQg ETxba2f912RgsdYT5bMSPDtYtabnZMAmxm147C9GubvRZddJGdjg12XeM4iR kFn5pG2/DAw/MJv/XInRhwsFI9vLZYCe8rPxlTtGHQPzlnsKZKAlWKq/yg6j nqN6ZcZZMkAjS2MbY4y+GNZHHHsmAw2nHVjHifkek/uocd1fBjwXjz2qgSo0 8UTqWfAVGdh9DoumZ1ShKYHTHPfdZGCmIqKRI7oKza+M9jw9IQPSiguCqier EEfvkn/FLhk47cbBuuVPJeK2RMN1mjJg1NNQ2d9ViXgbb5m/2ywD/uvi73OX VCJyEZ/8VykZECl0GWsNqESyMZSGtWVpqLp0wkyUpRLpmuwTMqiQhk6uaa8P E+VoD4RdP1goDd5rrT92NJejvTsZQ4ezpSHRTy9dKqUcHaDaFJ1LlAYwA3UH 23J0hPW8XViANLxZqD/1oawMeZbeS2nWk4Z/A8s8r51Lkbf6e/4OLWmIXVTa wrOrFF1NJ1/tU5WGgsiMrxP8pejm42cm49JEvXXBt/fkl6BwrzeTfKtSsGw2 6io0S0dpKu3alpVSkNbLfrz3bDG6oJRXHVQkBTFOBu4v1IvRJmqMad4bKbDk cRmdXilCOXJW9uQkKZjSi2QxjS1CdPH2wK6bUmBVQ+4tqSxETZztDbb6UuCi I9guvpKPxgfbbM7USoLK9bGY3iM5KGcgtz+mXBKSr/TEKnW/QZ790edrCiTh cZSlR8nhN2jmk+U1hRRJCI1fts4wz0YrH9qeDYdKAh9lgfZrVyYSqGobcjGW hC97K8z0ZlOR+tM2z8vNEmAxuKHH+0sCumvmy7YIEtB65JKkaXw8+vZPKjaw RAK41pN1P1s/QVFnnekR6RIwN9bvb1AXiyZV/62m3ZYAFmGT7JMaUSgbbw7/ vFcCDh7avD1E3RsRl91Uw7INEP7cszEaR2N59d19YlnicKiiMbdrMQebWf+K U0sWh++27AcGk9/ia96PDxs/EwfPhxb//tBy8fuSiVafcHFoXPk89q0tF/vt TcJdbuKg7/SizUwxH3dZr6U8VBWH34U5FMOmQhzmU+0hkCMGHlY/brxfLsV5 Ty6p0tLEQGOsWbv+UBn+Uirxa3eSGDx9mGzz4EUZ3vbPy/HSAzGIUJEKfLiv HA+EbTzS6i4G3scz9+0Jq8Da8bd0728VA53qUxIs7BiPlRlxcuWJwnd+HsU7 P6pxVgy95UqGKCi23nMJ4KvBFy+oRA++EIUW4b8n9mjV4AlRfqnKB6Lw4LjX suKtGjzl2aXufVEUDm47LH2eUovnaGfth5QI/fCjK4tpHaavdslbyorC6upF koN7Hb7WZTxSKSYKFYONVv4P6/Bi8KbLCZyioDfJfv5Pbx1e+fLnjuV3EXj8 eodDkVM9ZnsUVFCVJAIb3Ba4xjwacK3L32uqcSIAOgecBqMacKj+uT1PI0Xg wd+zr8PfNmDOyf3NPgEiEPMws3F2ogFzmwgOqNqJgMjceCWPcyMWWHvO80xU BAZeKWREmDThD92Cbdz8InD44TPvo+eacHR28GNfDhGQCElma7zZhEl2TnLW 08Lwge/B5YT8JixSpLpjfbsw/JiW38kUbcZSbuVnrkYIA5dKa3JlSzN+2tRk zB8qDEIDTGW9gWYsSevZnOwvDKVzLgXHpwk9ODX73lUYAs7oG3hItuANx2j3 aSbCcKbkp9vfsy04vlDTo0JfGPJstDWP+bRgcfJeG2ttYfid0/H7SFgLFnt3 gnJTSRhyqG1VlPQWLGIQk9/NKQzO21UZrd9bcOzLpCduq2SYd7jJO/WnBQv/ ywpgnSWD9i9154y1FkwubTDe8oMM9lu2buiRYOCHYl2baz+Twbu12cCUxsAk 70Gh451kuGrnvNNqGwMLbV3pC60hQ5LLBzVREwaOjlgPkmVkCL9zlNR+mIEF x8RSc/PIUOPncF3GgYEFUjU8vrwkg+SrY8lOXgz8gA3ZXI4nw+aZSrPTfgzM f9pMhzuaDDJ/Hpn+CmFgPilndq1AMvgzGJSUhwwccc17tNmXDBpxKcNdCQzM 2xP87pQ7GQZPDwzGvGTg+5pR+bNOZLBSe/qgL42BeWISn4SfJMOUC+VCTjbh T74OkD9CBmXJ7+N8+Qy83ox+hm5GhkOCUfGzxQx893Wd8SFDMmgKLk84lzMw 97qOzd93kcFmVfPSWUz45waErmuSIWwtIH6khoHX1fyeFdhMht0vrKan6xk4 THapL2UjkW/Eme1uEwNz3VgHupJkiL2RfzC5hfD7RFLbSGTIKHM8atRK+Nob 759fT4bC8rHMS+8I//FWjxUWMhy/vNYh9Z6BOaf1bB4ukGB37tPjFoQOtTTV UZ4iAevW1ZZ1hObIOUapGiHB5djcQkPi+1BeJ3abARKwX7mXyknU53C5PPqr hwRuxq+3mBLrhzYEvgt8T4Kgi0FfSUQ+dsXIfNEGEihKtpnaE/lDgp8+yaok wUmzbC4Vgo9tID1gbxEJ/ItupF+tIny9ojMfs0mwL429bn8ZA7M+rTG+lEIC jekjM/FFDBw0/2EzeyIJXnf/bHfNZWCWI/1CCY+I+s2h8xWZhJ8/NqsWTgLD c/asUSkMvCa40FcXQoIvW5Yivj1n4H8t5NQpLxI0LKaksUQxsFU8rUjclQRG 2Wl/Tt1h4BQn3fo9jiQY6IrZbh7IwKYsjsMR1iT4Q5oL7LnEwM/f+cwWmJLg qhvXrMc5Bp56eo/z8z4SRG/V0H9ix8Bx2/OoKpok6CaP731gxMC/2Oq3W24m Ad6MPU7qMrBe2yejqwokkJzTcSxVY+AhV5bz9cIkaElqjBITY+AtLy3SzswI gaUGG+3UQAsOunS2+O5vIfgvSeJ+ZFsL7tC92vD2hxBkLivXG1e34GvdST9X u4Rg5W7jV9tXLbiOZ5L2tEgInliaF8+eIOb3E+vO6jdC8Pxe0Ddvkxbsmiq6 fzRVCFLTsN6NHS1YSH+38444IVjHv/ReWbAF2/tEpHf4CkHvSTOfn2XN+O2+ l/RFdyFoHcrcl5nSjNmEChvlnIVga+HEyGxkM87I/DzifkwInqUnKyieasYz A5uUebWFYPeBhtuflpvw/jd7tLepC8H0zODWj4NN+Kmf9YHjykKQVbk/xb6x CeuL+l1I3yAEQoE6AcvRTVjs8UOrO38FIWbXWdkwShOu2Frm1T0kCIO7Zk1K WJqwY8tgjEKnIFzhPBnoOdSI36ypd+ACQWAR8q25nNKIDV0/WC94C4LzA9pc xcZGfAXx2bjMC8BJv+uxDtwN2NAA3z77UwA2ie7rLBuox2L7L9NPdguAXciO v2HF9bjE/JOkdYEA2OTf+uLuWI9XTqYM6noIQFrN4oabBXU4NEDPg2+EH7zB rCRVtxYfCWK+5Orhh8g7JF7O9bWYFvpfB0s9P3hx4l3dPTW4KZx7x+x//LC9 uaWwybMG8z/rWul34IcMveHPa8+rcVzpxftve/hg9W/cpvRyjJ0rZSte1/PB x7yukDRjjLWrOyaSC/lgU+pZpci2KtzXpG0V/5APTGeddpIHKzHlE8eGYHM+ kOTJcFk/W47T5xJTrRt4obZxPErpFx2XaL6D2SIe2FRjNn6FPweri0ceIKfx wP1B1jzGdDbOWDJrU4vjAcVaDrvTn7JwfHXrgLMvD1jUOxgaJ77GVy1a//Xu 4IHMpbeKWwVT8Q43hl4VfT24a6f9LTZ6ggv/ay4JK+WG0C45m30/otFbUkOu eCUXiDQlGyVEliFrB5LptywuaNBhXDlwohzNZdp/z3jKBSNdqd/yVCqQnuG0 qO41LphW6kvLbqpETb5y/vaaXFBWIvPu7h3i/+Kzn9Gr15xwMMXtC9fXWkRK 29q3KY4DtNz2F87UtaArugnsezzYwPp9m2rUqy6ke/vUgVHXFWwdETIWkDyI mhdupDocXMFp/Px8JlWDyPZiIlv35hUczn1pird3EPkc7q2o/r2MQz45SvgI DKFc+cMaz9yXceIxs9j314aQUpWxpPnlJaz+9Fqc28HvSGR+y++C6wvY+pWy ccXPHyjZ1cxkk90CFjr9xPDP2g+07atr2kvdBWzLITsoKjGMLOvTT0cuz+N/ Qc9FtxwcRuGP5LvP35jHsfVFdpE5w4hNXbRKIngOf9oxv2XY6ydiXliJCrw7 gwU3NXVd/TWCunI0hMzPz+D/3FlOy7GNorKZ89HShjOY3B1R/UZyFIUGtUeX rk3j6WO57L4HR5FkfFrMtO80Xj7R41uUNYoMGy0fOTv9xXfPn4gsOf8LxVNT 4yz2TeGL6dfIG+vH0A23PjGK3BQ+vKpa8Lt3DNU7yqr1LjNxzpro49jJMWTn N6MmfIWJb99hQ/7i4+j26yT1O2cm8b1LhupJzuOob920psee3/iixMV+Xtbf 6FbdM120MILTKP55iuITaPS9ziOnkhF85IRYgQJtApn3fhwPvzaClbIusK9p TSDJSeHnnxZ+4lMDJA5T6wmUKx6x5rU4jNPPl9VsCZ9A/a4BdSlL3/Hdre81 Becm0D4fSRlG2Xfssr3asZZtEmUElvj88fuOD2eo9FgJTiLv2BnanuUhbKgS L7yqNIl4qi7e+7g8iIuHVivuHZtE7hvLEkWWBrC2R2n02beTSGfn3KEzfgM4 I/lId07pJOIw27b2ZukrZvIKZ3fUTqJnPpln9i/34+utX94mf5xETU1PaX4r nzFHaljohdVJ9Ki/52NDwGf8ly+Q4cPFRA5/yfeEV/twGfPPhJ0gE81KhY9n r/bi6wXTntlyTLTRwz934N9HLCm2sN11LxNN3KKfUQ38iF+9q5LWMmGikvhp 8vW1Hhycy6/fbclEFjVuPmSWHmwXMzGdeIqJAkTtdY1Yu7D2VPRmfX8m2r8p fjwmuBP372gXqAlmIjLqSvzK2omH7remS95lotcXzNausnXgW8feV1nEMlFP uV5dJnsbTjwX8Kcxk4mkrzt+/cv3AVegEcUfb5kowu+gVjT5PX4+fAJ9KmQi txsy31pkWvH6oEMr+6uYqO8m144LCgzsVki9V1vDRKZBzHBOlRZs517VLtbI RJtuVe/U12rC4Zf73Q0/MNHT0MzIfp1GrPDiZS6lk4l4wh5990MNWMck6W5b DxON3XWKKiLu6VX9Fb1l/Uxkd9982NqyFssHr+2b/sZELeE7d00dqcF6CDay /yB4Hqwf2XQG8IGjqyqvfzHRNrnh69HvqvCVmRBD9JvgV6BTGZ8qsN6JhPLs SSb6S73XzvmjDCtK5dz7M8VE7conbugzSzAXf8Rr/mkmyt28RcV/qRgfPn1C jHWWiaLV1rqKOIuwdcYrBmOOiTw12oOmhArwkdG99ZcWmMhSK1l1s3QeXksK WPu5yESn3MdyGeY5OLiN6btzmYko3g+49zpl4k7BJ8qnVpjo6/Vtp4v90/BC GIPksMpEzwN76Jsf/of1/hmoa/0j+s0zS9ln9Rz7DImEDBJ6p9ju96o3H2MD 01zO82vE/hvwLKsdDcf7l4ZLqwn9cKdbYZNLEJFvOuIXof8HyCTPKg== "]], LineBox[CompressedData[" 1:eJwVVnk4lG8XlrJlHXv2MGMtP4VK8hwqWQoJKW0USgiVSoulskQS2SV7yq4x I9szZTd2QjuSnUG2JH3z/fVe9/U855z73Oc+7/tudbxi5cTKwsIyv4GF5f/P qF2XyY2X/JFVzq/w8X8M1JkpKHrsWgIqOL+RU5mJXx122knOSEXBQg6fI9YZ aMLo3Wf9x5monuPQYMtfBlI1kH7Q5JODtGK9JYfWGOjy3lvq1ufy0NeK9bC2 PwzUm+jqylAsQiZiF7SjVhloKS6+mrylBL0bvCmx7TcDicbUC/rykVHoqKf+ i2UG2hW14Iw2UpCC39fMsUUGsnsiX7FphYpC/fKPci0w0M1wS/7mqbfopvY2 kw3zDFQWlEe17q1CPKtI7cY0A/Xf/8QtQcdIzl9fbnGCge7ApiLGdxqSj6i5 ZjrGQM/37dhU2vMeOVH32NweYqDteiYFYu01yLPFb8b2OwNV656z822qRc92 L23Y/IWBvu2KyEPV9SjnkRRlqYeBPHSybNPLGtDPLE6X/zoZaF2rkoXtTSPy sn1eYtDKQDI7JqybXzajvoKd+pO1DHRW3eiv9dM29Ij9iq59CQPpxWdHLKW2 oy31otk/8hiIJ3CjwGG7DvTXcXVM7yUDjU+fT5t26UQvEhY1HZMYKL1Osfa/ 4G7Eas9IvBXAQJF/esI38Pcg49/bgx/5MtA9zYc2XbE9aEXCv8vtKgPZP/85 cjX7A4oWievOusBAwtezuah1fehUZSZ18gADsebadgUf6UdePnydoXoMNDvA nmT3oR85PyqY/b2TgVoPu6ivDn9EbrnHXljKM1CQorLFvk1fUMuKxZlPazNo bdy62WHrALL5uSzo82oG/dqUv93UaQAJzZJdIWUGTciyRe94NYB4FAq8v0XN oH6bUvuNmoPIZXg7X+ztGVT6TmQ6E4bQZ7nVsSXTGeSR0Ms/dnYYsf8i2CYP TiMn8vZrHRnDaNuRCxzF3dPoVHtQf9noMJoRKQhJqptGZmy70kKv/EReuyKj 5nOmkbJX3A41vxG0FnPnX577NBo0trPxSBlDR064BPgwppD+zzsOrV/HUEg9 eV5kYAolBqS5q0uPI3T+wLeojilkVT7xcCJpHPWcLScTi6fQe7W7FOeECXRt pe/8G88plM6XLnb22RSqmKmaeDI+iXZMLE4pHZxFfB1+mU41E+jcbs6rfRdm Ue4ur+F/hRMoIkjid9CDWaQssbnwTvIEmpBHbCM1s+hM/654mesTKN0+RDrT cA5JBniROYkTSKhVwlwO5lF47JH8FL9xtFCICsX3LqCdckkn5beOoRa1vYKe pxdQ0NPkOX/OMZTxUud6g98CEp18RqhljCKrF9v2+tQuoPC1DYsrVaOoOEKy ofvIIjqw0BOteGIUebgvf4s4t4T8gleMqx+NoFHVQj62oBWkV9qT9/3LMPqU JeMx17GGOl45WD4+PIhue1QY27xghZ5nZZo717qRIVq8wFfICnM/uEv067vR ZgGNgIZqVhAPTIu2i+xG8cXpb/d8YwUP1Tzlt4rdiLIQqiojvRFmg/OO7DHv QvO+djyjiRvh/aOtGlGZHcg1eLH9ZuwmcGki05feN6MddhpTmtmb4EH8iv/e U83ot/IlzsnSTVDDaMijLDahkOYvcPoD875NzJVjKk0om7e22ECYDWJqLr3e G92ABqOjojdHsUFS9VC4m3ctskvVOJ78mB3IoepPX9RXogWObw6vUtjBopTf M/t3BYq8Eu5GKWQHO08NiuO2CtSkPx7Q0ckOouvTvKxxb5Hu1/S8TaIcoLF1 8iLXVQqSkhBldU/hgL8W+T7PLYrQ9+i1vH2FnDC1Z999+5godOfPa6opjRNW i5MfKEU+QeLnT7w/3skJwX8peyvXQpHlDkqf1y9OSC8c2bzUexfROq6wZu/i gsgcgT2X713G6bw/jvPRuCCtpteqPzgeOwc3sX7v2AzyflwzN0cK8Sn+y9Sm gc3wRKBab+puET4ax+NGnt0MhF9z/ygcxVjvpcWHUAFuGCnMKU8UL8GCDR9e allyQw3apRuiQcZV7EOHH7VzQ7QCZdVdswyXRNzfcP07837kZjX//DKcI0qk nGVwQ7KPrX+G8lscRbooq83PA+1jdwIlpcrxRaOZue/mPLAYeebT++UKLBy0 GqvdxgMVc6x3ggMw3syXbCb3jQcCffGo9wzG/2L2sXDP8MC+KyrqWttoeCLL /9IALy9kCq4yqHE0TKtj1ws7wgufTjsSF5zfYTc2ocGBFl6Iw4c6ZGbeY8fH 5Bj6F154oZ3o1iVVg4+L2JpSpnhBm5D9idOsBhsSE96E8fDBC8+G9r9ZNVj8 oGyQzmE+WDg8/JPNthbXPFBTC6fzQfKx/3wDUuqw7r+YVNJnPmgmvoiLq63D JbdYRN9N8EG/1LMUrYk6nO7xgWWJix8ePCVe2KhVjwPt/HrPGvPDP5Lq3K93 9Xi1a9xs9Tg/tCaaXzcYrsfeR6zfPXPhh/LNXr9F2Buwo6FKXlMQP3TmXFG0 Nm7AhurdATvr+EGZ22MfqaEBl2fvW27t4Qf9qsXZvJ8NWHNrjtvFYX4oGRri qtjYiAXCqnPbNgiAifmHUnf9RsziHx27casA7KkxRhoFjXjg0j4397MCoJn6 2HrPjSYs9XI+W9dFAAzsjwQZRDRhu+GXgxxXBCA5z62jK7MJd5wRPJ5+TwA4 NvMdeNrRhGnHRg36nguAuc0aW6B8M16LTL6TmSUAJWspFn3azXh321GqV74A iOw/vUYxbsZFxpXqPFUCMJ/jqSvq3oxf7HsqZvBFAHSMg1+eKGrGn3yNrPiG BUDcI/IcB60Zi5b9Cf88KQAZpygCBu3NOGKHM6vPH2a9zGLtE1PNuPmK5L79 GwkQQv4ttXu1GbPnd9wQ4CbAr2mDgQwOOr6ntHf6tQQBApt7J+W30nH5hVml m/IEOEJyKNTZRsdLaVmOB1UJkLJ84WD/bjr2kBLo/76HAOECBybrzOn49Yk6 wXwDAryqYfMTPEHHI7G+R3xNCPAwmHt62pGOzxB+vhc+QQCPcY/LVtfpeFNi z0KYAwEG3IQ/Rd5jxsvXkja6EmDph7yDWTAdW+a+sfP1JkDbx57TgU/oeHln xqM5XwLQr/Zu14mj45TKqMqL9wngnbFfyyWFjg8cDJz5HkaAwWPZ7SJZdDzR 6iV3/BkBJqMWzhvm0nGkrYNVWzIBPpZG2EwX0bHOd8sHB7MIMHxr32YxCh1/ dQFKZT4BHOX+G8fldPxgVmNsJ4UAlKDVk2PVdKx6S1Yit5oAm3WjmyLf03HH Bv7D8g0E+Bx0NPVtHR37PFq/m9BOAOsHk2bnG+lYSmimUKCfAPGS13Qjmum4 JunrYPAAAaY2n/is20LHroqtQv/GCNA8fO7FpVY6FsivPOgzR4D1za9WJNro mKKdd2P6NwFKsjJOWjDxqeqkVxdYBSEqVkSXg4lZD4V9/rxZEOZchHn3M+Nf tfvyHhMSBKHdm8w2MvNb2rmiZklBiE6NcTNm1l8aOOFloCgIywk1k4JMfsmX TDLK1AXBw75z/3kmf8P53R80tAWhW8d4bg+zvzFfZY6X+wRh3HPRK47Z/5ON 4ntkjARhUmTswB2mPjrhHJdjzAXhcrPHxFgpHX8RXk7mOS4I4fEiw1+Z+gY+ H2m7f1YQ8t5mkO2Z+iuTeln+uAjClVNbBhyZ82krqNvh7SkIh1zyJ38x53d9 V+mF8ZuC4L+Lfpo/no7fGz9r7AsVhAtHTWNGQ+j4Yuf9VfMoQWjbfs09y5+O +U5eVa9PFITtZ8mdjBt0bH/ZKpKcKwhZbF881Z2Y+iwYvFcjM/PPdTfI2tNx zh3NhfRKQcDO60NplnS88FjA7mmrIFC/3XhtrUvHEUVtsh4MQTAJISc94KRj rT3VR5m/VhC4xqW6ztyXT+/y759iEYKUHVLy3NPNWKk7fNSUIAQfl4Ipg8x9 oy2aFirtFILIlpDbUZHN2Pme7mDKXiHYIX3JvsyvGfNyqAqJHhCC0G/xj308 mvFJca4bm2yE4IXvBs9q02b8S7dBf9BHCPgD+4Qi1ptw/bGigw33hOCBiXX3 0GQTjndLOJwfxMxf11Yz2N+E9VMun7wVKwSfD02fGihuwo82CPgQKEJwXZUr gXG2Ccs32uUbLArBLTOt+M68Rrw4YEBW+ss895sR5Y5pxI2/VSt42YTh290n mct3GrGH2t/Gj8LCIKRZsHvKrBGXR6QNe2kJw7/Z/BvHRhrwUZsJyfSrwpBz qDbpOW8DVvTolg+5LQwqR3O5zOfq8VJQpYrHfWFo3G80X95Tj5PLInbpRguD 8IuFlJbEejwmufNYV4kwaJxidx9QqMf+Q7cfsc4Lw13TbyePqdbhwiu8vx09 RYDfJ+BiLU8Nnur+b3n+pghMend93zXyHqvutl4MDBCBHEuBqKv4Pc5kSZpL jxKBwyePTxt5vceJT5UnhsgicO5IxvVrXe/wgzf7Pzv+FgEiv4NURhgNn1y+ VeUYKAoz5UYS26sr8Ca/kQDHZ2JQJtAeuO5ZhD2ubrRxSBaDGVb2BX7JItzv Iqd8LlMMosUHAnQeFeI8y5Ntp8likPXil4jJjgJsLd8mcaJHDA7mIlazwFyc UVf6xkJYHF5dfENeUsjGhjwPf+o9E4cr2ScbL6/H4jyW9LK9yeLQ0CvsdSg/ BosuVofpZorD6RcK51+eeoYnvq5o7iaLg/XX9hz2qqc4qtDt3s4ecaArDL0O 4grFQ1bWYqrCW6BF0jHHPM0BByQomIg92wKJZLu779ueInWOrLXppC3wN4O6 8TVLNOq/RiqqzdgCh++ZJD3WfIa2W6qIeb/ZAobndaR1I2PRJ3aNny1dW+Cy x4aQd5CEtK7pBgQSJEDkej7bG+10NGJ+9O10hATkP96jHDX6Gj2t7HKrjZWA Q6pLbcNuuUhP1VouKUUC/uqHVvnN5aIotuPBxgUSoBtx9UnISh5CladsMlol YLWkOaLqbwGKV7k4Z8cjCbeSWDSqvYqR2SY/ldpQSQib1/mZwlWKzlXp9hyI kgQ359OG3AdKkY/P0r26REmYmD/z6tfdUpQ+5t5TnysJlaL8v7RnS9FKyym/ plZJ6K47F+PRRkGZMbof2ghSkB+V4a7iVYbKzZf8LCSkQEPRqIgnowy1c5So dshLwcQu6WTHnjK0ekvFv3OnFBDQhOcF7bfI8oy4Wo+NFLyZln1dMvsWrZGW /D8mSMG7ytli0cMVSHCgWO1kuhQsD7Xyz1yrQEoJ7r2fXkvBl1BlE83nFciK +6falwopqNKvWPw9WYFyGN29375KgWFGvH1YYCWqznkScHZECoaNvHPKsitR t4OZ+sCMFIy3S5+3aK5E693vAwb/SUG3+kWpMv4qZFNWrD68VRo+HT/N5Rld hVy93PsuqErDUJS69FBJFfJXVQn8uUMahB/L9lV0VqG85NS+kf3SEORNfZTF W41YA54EjjtJg9rAl+dH7lUjcV2zba4e0vDg7ODdlfhqtO0Xe/+EjzQU7/Yd 5HpTjeyc7m2bCpaGNKPPXWd/VqMCE/f+mVfS8JXD3KTXEKPZKHm7b8XScG9k LtPwOEY7vvT1tb6VhvvDOweUL2NE8TDsy2uShvr0bWOOTzFaoS7bJndKw4fY 1RJKBka6G/J7wz4y+ZlHnHhQihGOFut1HZeG0ifKZo/7MGL92mJzck4awsru ZDSOYnSAFPjB5Lc0jDP+m7+7jFFj2VSPMpcMrJjzH83dTEMdX991jyjLgM5q EIsDkYYElW4c6/1PBi7GEU66qNGQtad6d91uGRiOiVhS1aShj6xxXZnGMtCw MrdtYi8NSR0+bPXMUgYElWZ//gQaOhOzoeu+nQzMcvFLvjhIQ0NKbp2OF2XA //0ymJrTkKLX1qNWnjKwDNtt9axoyLm8t8Pgpgxs9zitOWVDQzkbwy01/WXA sJtl9MQJGpo4bNAhFyID89q3wx+eoiH12CULgUgZ2PpDZPeVszTk8T23/V+c DDxe+sci5khDRcoOFowXMtD44si/Oxdo6JeXaPu3lzLgemHZLM2ZhnQq6OZt hTIQdvYjy4OLNHRzU0BbFVUG7t4r2U10paHyIzrm+VgGvpUr8D+8TENrsZOt yQ0y8PloYWqGGw3pD6QeCW+XgdEV6uYAdxryV7Ftvd0nA9n8/pelPWjovTf3 kcvfmfzblYduMvGmSlrLyVEZ2HKjOCKaiY3YfA6bMmSg2mfpqTsTh5irtexZ lgHPmCJeDiZujhswU/knA99FrymeY+bnHYyhi3PIwrWvhb9vMutbqpqZcfLL AiM0r/gok1/UVRb6sqgshMSHeU1coqGeylLTURlZuHHb6Ox+Zn+i7Jebe0my wPImP+0Us387CznT+u2yzP1zOafD1Ccx/kNTqY4sVP2crelwoKEvg49MsvRl oeNL/KIaU18ZNWh6ZiQLH/Xvyxoz9T93bdH4gbksHPyR5UZkzie96nXjVVtZ 8OFu5Kxlzk/JUqTRylkWwhT3DB5kzts1ofmQoYcslH9SvKViSkN5Q34Nmj6y 0JJ6SKyd6Y//rk/UCwTJQuT0XpKDHg15V78wYomQBcFm3t9HdtEQmcOmnhEj C+OWIrF/mf7bnYjr2rJkYbL34p8sEg0Nby/Uu1ggC4OaKyck5WjoaU3Kmw1U WZhIUu802cL0z9TdNK1GJv5PS6ab6ffYAHfxtg5ZGF1b89++kYb2i55+4vJR FmbistRDljBKRnp3EydkIc1q4M++DxgZ96gt7PwlC1lOPc1NNRgtXpS83PpH Fs7GZx1rKcZIyeSuuj+7HJg0df3dFY6Rv/cpiTdicvBUt5O/QhejXr2eD/8k 5aApn/UPLxEzvy+Hnx6WkwNqF8urL3wYfUzayzmiLAeeileWGAPVaEedxJK4 rhyw+w+f2eBXjX6Kfey8d0oOvqUFJ7tnVCG9IcvH9HNykDjceqTjYRWKyms0 FneSA9vy6V3lLlVI36AMF7vLQcS3yg6SahWKd43LH74nBxTvcOKtV5XItMom 1DRNDrRzC7jLoipQanDrgbgsOVj3OZAy416Blo4eZBl+JQdRWv1Bb40rUMaI 1o27JXIg0/Oxh/9vOVrjF3YqqpGDiS9xPH3nylGBYxeIjsgB11qqT4LIW5R1 6c6U+QSTXyWbj+lkGUr2JMUHz8jBZe5D2Wm0MvToni9jZUkOyvlzNYxcy5BT onzKZ46tkFDooxvwloqkurz/pKpsBSnND0vhxhT0yECIoua+FbQHXSRiNd4g ZzlrNYOFrfD9mO7+zqIcVPKDo9RoVh6KxZesj6Gr+Fo/vT5sQR4Sx5O+h/X4 4F2tT/o7VuSB/zpfPHbxxZUUsbWTGxTgfeeewzM1/rguVGn/FUEFKEmr0svu Dcb9Goc647QUQECmuZ53IAqv3w6aHrupAOVPvcKuSKVimqfpv213FaD1tuPp R/dT8X0nPsLVAAWwmZ/uU59IxZwWsVp/QxVA4h2nDyslDRPks28TkhTg12vx ytpDGVixsY5Lt0oB0thc5o5aZWNTYTZS2AZFCGyhtET8zsUKnQfTg9kUQSa+ fVzeJA+vPQ6SecClCKfLQkWU4vNwPgen2F2CIhid6i65rZWPBf5s5ryyVRHk tv8y3utcgD8MCkxYGShCf27UvgzbIlyQctTZ4qAiTFKeMEpvFeEg+6ghMxNF 0HqX6n0ruQjv/iD0+cBRRXg68/AwYbAIJzaKtug4KILtvcv6t5yL8blCqQKJ AEWQdHrE0etQgve4nVYVe6gI5ObksQa/EiyokpItFKoI+uKx5Reel+CadNkX PE+ZfDQujj/vK8GkWPnI9VRFuLpvtYnN+A2evKPsPURTBE6n3hlXcTKu3XNp 5lutItwQUrEf+4+Mk5deuX5uVASFHVp6PCZkbO6pdr6nQxFC0jdeMbpJxkXn t1vXDyhCzXefS/e6yNjHVEvnNQsRTh5UWmi/XooZ+1+mR20iAjWJR1I/pBRf 3CfBf5uTCBUTZYbHEkux/X8sY2YCRMip3cDtXVWKQbQlYVqWCCrCfznu/SvF 5fyIvVeBCLU7rpPl+Cl4J1eJd7USEa45+3hdkqFg0lqc2RMNIoj2/lc9tZeC uYfO//0PEaFpKMa6zJuCH3zuvbRlPxF07SS2h/pR8HqPSe+GQ0S4cbL/zr8w Cp5t0CjsMifCSsC9g18yKNj1XbpkhRURvJB3jmEhBf8oFwnJsCXCd3mKlXk5 Bffm/zl37QwR5i1qT9u0U7DFS4/WU45EiNyjUGL5kYIbUwf3HHQmwpnWVa25 IQquiG4QFPUgwl6bvIqtixSs9VjXb92LCC3a8VXFfym4ICh/cuQ6EXLfyk6M sFFx6q3oWupdImwZCWgFESrecpVdMzWACBpNX8OdpKg4yu3W85CHROil9QZr KFAxj/MUl1coEZR2TdWlqFDxw7NnfU48JsL7mTGLNxpUvG7XNWTwlAjeXkMa 7tpUfNPqoIVqDBFsfHd7tehSsetBNeU/yUQYPTtmdvsAFf/QT3n2I5UIt5Su sNKNqfjUbsKGlkwi5LHkWtMOU3Gv5gN3cg4R3PWcrO0tqdhCbfljch4RVO/l Cycfo+JGRVejh0VEiOL4+CrQlooNZb6WuJOJsPAvQIX/BBVXiFnK2pYRwZEa 9NrAnoq1CDVh+pVECP7JeVDiNBXnb9ZZIdGIYDTsJphwhopJm15d4K8lguCI 3bbqs0x9/kp2LjcQQVyZXBx6jqnPcsS+AToR1OWyK/8wcdTshteN7cx5ZMe4 CTsw9Zm4JlrcTQRfSeXBbub5wx+jgQl9RHgWAnt1mXj9y0lGwGciaFevJx9i 5r/Z22rv+p0Z71atssbkM9cOjVY/iNC4W5Td7hRTr6Y3WntHiTDQ2nvc/iQV D78npSlMEiFrnMuI3Y6KT1cm8PIwmP04za3Y2TD1KuXxXZgngste9sRjVlRs Weg38mWJCM5By8eWzKm4KWfeqm6VCEV+r6wMzKh4pYG1gvUf0x877Qr6jZj9 jzJfhhtJYHf3qDaXIRVbsyuE3eUgget/7ordelQcSNz5q5ybBAfsVcp1dlFx 0YH99iv8JBhIy9HR0qTi7+eP1WgLk4A1uugzXZWK9dKvRhdJkeCneExBM9NP ru/u/5mWI0EJh9TFHUy/JQxEn1cjkiCz+46DNi8VL8mQd2ZvIwH1Yase3xoF FyUtdCfpk+DMt0xe4Q8U/K18k95HQxKYCxfuONNMwbyfhDNFD5FgVSZH0Agz 90lc+9pTCxJo10WdmX1JwYox14WDz5HAWYtztewaBVuRH96pvUCCqhRXvOpM wQHdMcMbLpHArDpc+qsdMz+BQr7jRQL9ASeNh8z9jo9YsvYOJIF/dFyz+1op rs9nryoMIoGPdbkbnizFiy2ixOlHJIgfYR0mfyrFVty7Fl2iSZCqcJz7MbUU 84TciDmdSYK3BVuS191KsX/AygfjehLUHfLWMm8g44JUTv2gZhJcb+4hCxWT 8Vcsnl3TRoItxs/DHySSse76bh/9PhLY8vhaurqR8YLvLVGtMRLc+CPWac1D xhevrdrKblaCPjcYktn3BufbB6sI8ylB6ARjZ6HCGzxvKLzGKagEC2fLnP9y vcG3CdvT5rcowTmTOdsPH0pwRIHDZJ2KEugkPR3ydy3BpWONfm4mSnCmzGm3 dkgxZj0dl/M2RAkspHQU7TUL8aEDircLwpUg/Y9HxBijAIerFR/JiGTW49i5 LFhQgEVWm+fD45WA18zaYL9KAVaOW9c7l6MEcW4mZzQl87F5p1Mne6MS9Coe 1z0w8xonHdRaPcahDG+Xws/fOJGNX+cfj6vmVoaqok9dwmzZuEzktpaKgDIs Tr5nOBVl4d6f7zzWxZWh12NiXYU9CwsEWfzIUVWGkdtOOy8VZOCgeteWv0eU IU21l/fAr1TsfSgt5eUzZfghQN7EXhqLAwpr9womKEOuVZl9778YHCk21n/n ORPzCjy4YxqD80e3C1llK4PvdLui3fdoPBZcGbxGVYb7fuph+RxP8ZnGPs+j n5UhJ6GHkJsbhN3/+8Nb+V0ZQu45BBiih/hOvEwuaVgZPtDjyn513ccJF51+ /plSBrGHMdTqVX/cw/nrRPa6MrRD89tLCT74h6fossBGFXhFFdxUXHMVz/fv eXabQwWoPkgyfsYT87/yb7MUUIHnt+WfLIU7YxlC5uUKYRVI3/BFWXH0HFa/ 1cBJ2qIC5lJJ11Ye2uK9gxNZkdIqUOz044BToBE2NeHb/2erCkwI6AzSxp2q /wdwzi0s "]]}, Annotation[#, "Charting`Private`Tag$1767#1"]& ], {}}, {{}, {}, {}}}, {}, {}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->{True, True}, AxesLabel->{None, None}, AxesOrigin->{0, 0}, DisplayFunction->Identity, Frame->{{False, False}, {False, False}}, FrameLabel->{{None, None}, {None, None}}, FrameTicks->{{Automatic, Charting`ScaledFrameTicks[{Identity, Identity}]}, {Automatic, Charting`ScaledFrameTicks[{Identity, Identity}]}}, GridLines->{None, None}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], ImagePadding->All, Method->{ "DefaultBoundaryStyle" -> Automatic, "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& ), "CopiedValueFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& )}}, PlotRange-> NCache[{{(-4) Pi, 4 Pi}, {-0.21723358083481298`, 0.9999892952885239}}, {{-12.566370614359172`, 12.566370614359172`}, {-0.21723358083481298`, 0.9999892952885239}}], PlotRangeClipping->True, PlotRangePadding->{{ Scaled[0.02], Scaled[0.02]}, { Scaled[0.05], Scaled[0.05]}}, Ticks->{Automatic, Automatic}], TraditionalForm]], "Output", CellChangeTimes->{ 3.7135980165967712`*^9},ExpressionUUID->"a6d57e30-5bd6-4b6f-b462-\ 5d3c0480154c"], Cell[BoxData[ FormBox[ TemplateBox[{ "Power","infy", "\"Infinite expression \\!\\(\\*FormBox[FractionBox[\\\"1\\\", \ \\\"0.`\\\"], TraditionalForm]\\) encountered.\"",2,3,1,18936013414348090244, "Local"}, "MessageTemplate"], TraditionalForm]], "Message", "MSG", CellChangeTimes->{ 3.713598016988731*^9},ExpressionUUID->"23e46942-bb37-470a-a504-\ 741b46fb168f"], Cell[BoxData[ FormBox[ TemplateBox[{ "Power","infy", "\"Infinite expression \\!\\(\\*FormBox[FractionBox[\\\"1\\\", \ \\\"0.`\\\"], TraditionalForm]\\) encountered.\"",2,3,2,18936013414348090244, "Local"}, "MessageTemplate"], TraditionalForm]], "Message", "MSG", CellChangeTimes->{ 3.7135980169946404`*^9},ExpressionUUID->"47bf6efb-3bcc-44e9-a240-\ 5f3ef701c143"], Cell[BoxData[ FormBox[ TemplateBox[{ "Power","infy", "\"Infinite expression \\!\\(\\*FormBox[FractionBox[\\\"1\\\", \ \\\"0.`\\\"], TraditionalForm]\\) encountered.\"",2,3,3,18936013414348090244, "Local"}, "MessageTemplate"], TraditionalForm]], "Message", "MSG", CellChangeTimes->{ 3.713598017000257*^9},ExpressionUUID->"a50090f8-3444-4769-9913-\ c824fbd6093f"], Cell[BoxData[ FormBox[ TemplateBox[{ "General","stop", "\"Further output of \\!\\(\\*FormBox[StyleBox[RowBox[{\\\"Power\\\", \ \\\"::\\\", \\\"infy\\\"}], \\\"MessageName\\\"], TraditionalForm]\\) will be \ suppressed during this calculation.\"",2,3,4,18936013414348090244,"Local"}, "MessageTemplate"], TraditionalForm]], "Message", "MSG", CellChangeTimes->{ 3.713598017006473*^9},ExpressionUUID->"6aed1ce1-21a6-4c66-8d16-\ 8ecc7c3b708d"], Cell[BoxData[ FormBox[ GraphicsBox[{{}, {}, {}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->{True, True}, AxesLabel->{None, None}, AxesOrigin->{0, 0}, DisplayFunction->Identity, Frame->{{False, False}, {False, False}}, FrameLabel->{{None, None}, {None, None}}, FrameTicks->{{Automatic, Charting`ScaledFrameTicks[{Identity, Identity}]}, {Automatic, Charting`ScaledFrameTicks[{Identity, Identity}]}}, GridLines->{None, None}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], ImagePadding->All, Method->{ "DefaultBoundaryStyle" -> Automatic, "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& ), "CopiedValueFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& )}}, PlotRange->{{-2, 2}, {0., 0.}}, PlotRangeClipping->True, PlotRangePadding->{{ Scaled[0.02], Scaled[0.02]}, { Scaled[0.05], Scaled[0.05]}}, Ticks->{Automatic, Automatic}], TraditionalForm]], "Output", CellChangeTimes->{ 3.713598017008987*^9},ExpressionUUID->"b16a784c-e8e0-4ae9-bcd7-\ 14c375829476"], Cell[BoxData[ FormBox["\<\"This statement is false.\"\>", TraditionalForm]], "Print", CellChangeTimes->{ 3.713598017009987*^9},ExpressionUUID->"855aca59-2b82-4e81-a494-\ ac3cfead4027"] }, Open ]], Cell[CellGroupData[{ Cell["Chapter", "Chapter",ExpressionUUID->"c4c6b8c7-05a1-42ef-8d7f-d9a36b9b49ff"], Cell[CellGroupData[{ Cell["Subchapter", "Subchapter",ExpressionUUID->"ce9534f1-6d5e-49b8-9bf6-f0c79db5f242"], Cell[CellGroupData[{ Cell["Section (closed group)", "Section",ExpressionUUID->"02fc9cc7-1818-4b1f-a53a-6fba79b45eff"], Cell[CellGroupData[{ Cell["Subsection", "Subsection",ExpressionUUID->"244d5a08-3730-4d27-b27f-bb4b17041ae2"], Cell["Subsubsection", "Subsubsection",ExpressionUUID->"93b45fb7-ce82-4eec-8e52-84d5f26e06f8"] }, Closed]] }, Closed]], Cell[CellGroupData[{ Cell["Section (open group)", "Section",ExpressionUUID->"7fd40190-2a68-4c43-958b-a5505ac2de0b"], Cell[CellGroupData[{ Cell["Subsection", "Subsection",ExpressionUUID->"724b7e9b-3430-4949-bbe6-87b942ed1d1f"], Cell[CellGroupData[{ Cell["Subsubsection", "Subsubsection",ExpressionUUID->"ae711093-6fb7-427e-bfda-ac3baf2d3524"], Cell["Text: Lorem Ipsum dolor sit amet", "Text",ExpressionUUID->"bd0e67ab-9c9f-48d8-9d65-9426e9854831"], Cell[BoxData[ RowBox[{ RowBox[{"(*", " ", RowBox[{"Sample", " ", "code"}], " ", "*)"}], "\n", RowBox[{ RowBox[{"f", "[", "x_", "]"}], ":=", FractionBox[ RowBox[{"Sin", "[", "x", "]"}], "x"]}]}]], "Code",ExpressionUUID->\ "d596caea-e3e2-406e-91db-a6b6172a58a4"], Cell[CellGroupData[{ Cell[BoxData[ FormBox[ RowBox[{"Manually", " ", "entered", " ", "output", " ", "cell"}], TraditionalForm]], "Input",ExpressionUUID->"6656aa22-6087-4f86-aa7e-\ 5e4315b04b9b"], Cell[BoxData[ FormBox[ RowBox[{"cell", " ", "entered", " ", "Manually", " ", "output"}], TraditionalForm]], "Output", CellChangeTimes->{ 3.713598017185604*^9},ExpressionUUID->"d6efdfe0-2fe8-4411-99ef-\ 96b2507fc967"] }, Open ]] }, Open ]] }, Open ]] }, Open ]] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Subtitle", "Subtitle",ExpressionUUID->"e63d0837-5932-4492-850a-185c29a65465"], Cell["Subsubtitle", "Subsubtitle",ExpressionUUID->"147ffc62-9c50-42e0-8bb6-4e6f341917ff"], Cell[CellGroupData[{ Cell["Item", "Item",ExpressionUUID->"34b9351e-10a2-44f9-96ad-83cc61f5de1d"], Cell["Item paragraph", "ItemParagraph",ExpressionUUID->"951d0623-f8eb-468f-9725-fd25339b0927"], Cell[CellGroupData[{ Cell["Subitem", "Subitem",ExpressionUUID->"e768f431-c1a5-4efd-967b-57610de6e0fd"], Cell["Subitem paragraph", "SubitemParagraph",ExpressionUUID->"f4f97d73-271b-4cb9-907a-82f0c322c66f"], Cell[CellGroupData[{ Cell["Subsubitem", "Subsubitem",ExpressionUUID->"7a5202ea-b4fe-42c0-a728-2651c2e3de6a"], Cell["subsubitem paragraph", "SubsubitemParagraph",ExpressionUUID->"929584ed-4c57-4d92-aad4-44aa5b6f50b2"] }, Open ]] }, Open ]], Cell["Numbered item", "ItemNumbered",ExpressionUUID->"0c015301-f354-4503-a0f0-5fecc1365a73"], Cell[CellGroupData[{ Cell["Numbered subitem", "SubitemNumbered",ExpressionUUID->"cf8b8d5c-b269-43ca-9d06-5cce172f36d2"], Cell["Numbered subsubitem", "SubsubitemNumbered",ExpressionUUID->"bd4e2993-585b-4c12-b3e5-803a82339010"] }, Open ]] }, Open ]], Cell[TextData[{ "G(p, m) := ", Cell[BoxData[ FormBox[ FractionBox["1", RowBox[{ SuperscriptBox["p", "2"], "-", SuperscriptBox["m", "2"]}]], TraditionalForm]],ExpressionUUID-> "5c7a0b68-e4f7-488d-bee6-756128c625a2"] }], "InlineFormula",ExpressionUUID->"23a7b620-71de-4d57-b9c4-21d6d1b62c9b"], Cell[BoxData[ RowBox[{ RowBox[{"G", RowBox[{"(", RowBox[{"p", ",", " ", "m"}], ")"}]}], ":=", FractionBox["1", RowBox[{ SuperscriptBox["p", "2"], "-", SuperscriptBox["m", "2"]}]]}]], "DisplayFormula",ExpressionUUID->\ "30a560f7-f497-4494-b8b0-495f9b331b8c"], Cell[BoxData[ RowBox[{ RowBox[{"G", RowBox[{"(", RowBox[{"p", ",", " ", "m"}], ")"}]}], ":=", FractionBox["1", RowBox[{ SuperscriptBox["p", "2"], "-", SuperscriptBox["m", "2"]}]]}]], "DisplayFormulaNumbered",ExpressionUUID->\ "0a8a6170-16fa-40ca-a6f7-8149e6b6e65e"], Cell["\<\ Program 1: if true { return false }\ \>", "Program",ExpressionUUID->"276f47a0-cae2-469e-ac16-09f84352c8a5"] }, Open ]] }, Open ]] }, WindowSize->{808, 911}, WindowMargins->{{Automatic, 1748}, {Automatic, 30}}, FrontEndVersion->"11.1 for Linux x86 (64-bit) (April 18, 2017)", StyleDefinitions->FrontEnd`FileName[{$RootDirectory, "home", "josh", "src", "Mathematica"}, "Stylesheet.nb", CharacterEncoding -> "UTF-8"] ] (* End of Notebook Content *) (* Internal cache information *) (*CellTagsOutline CellTagsIndex->{} *) (*CellTagsIndex CellTagsIndex->{} *) (*NotebookFileOutline Notebook[{ Cell[CellGroupData[{ Cell[580, 22, 85, 0, 197, "Title", "ExpressionUUID" -> \ "1376908b-4a40-4de4-a53f-0d15d9a99a7b"], Cell[668, 24, 153, 2, 62, "Text", "ExpressionUUID" -> \ "19ea30eb-725d-4965-b150-04e4a979540a"], Cell[824, 28, 338, 10, 205, "Input", "ExpressionUUID" -> \ "f9f2c72e-9519-4211-9e6e-4fbe0a1fb293", InitializationCell->True], Cell[CellGroupData[{ Cell[1187, 42, 799, 25, 341, "Input", "ExpressionUUID" -> \ "ce415ae6-d359-4181-aeab-042280ba951b"], Cell[1989, 69, 22413, 389, 503, "Output", "ExpressionUUID" -> \ "a6d57e30-5bd6-4b6f-b462-5d3c0480154c"], Cell[24405, 460, 381, 10, 80, "Message", "ExpressionUUID" -> \ "23e46942-bb37-470a-a504-741b46fb168f"], Cell[24789, 472, 383, 10, 80, "Message", "ExpressionUUID" -> \ "47bf6efb-3bcc-44e9-a240-5f3ef701c143"], Cell[25175, 484, 381, 10, 80, "Message", "ExpressionUUID" -> \ "a50090f8-3444-4769-9913-c824fbd6093f"], Cell[25559, 496, 454, 10, 43, "Message", "ExpressionUUID" -> \ "6aed1ce1-21a6-4c66-8d16-8ecc7c3b708d"], Cell[26016, 508, 1335, 39, 503, "Output", "ExpressionUUID" -> \ "b16a784c-e8e0-4ae9-bcd7-14c375829476"], Cell[27354, 549, 188, 4, 45, "Print", "ExpressionUUID" -> \ "855aca59-2b82-4e81-a494-ac3cfead4027"] }, Open ]], Cell[CellGroupData[{ Cell[27579, 558, 81, 0, 141, "Chapter", "ExpressionUUID" -> \ "c4c6b8c7-05a1-42ef-8d7f-d9a36b9b49ff"], Cell[CellGroupData[{ Cell[27685, 562, 87, 0, 132, "Subchapter", "ExpressionUUID" -> \ "ce9534f1-6d5e-49b8-9bf6-f0c79db5f242"], Cell[CellGroupData[{ Cell[27797, 566, 96, 0, 138, "Section", "ExpressionUUID" -> \ "02fc9cc7-1818-4b1f-a53a-6fba79b45eff"], Cell[CellGroupData[{ Cell[27918, 570, 87, 0, 70, "Subsection", "ExpressionUUID" -> \ "244d5a08-3730-4d27-b27f-bb4b17041ae2"], Cell[28008, 572, 93, 0, 70, "Subsubsection", "ExpressionUUID" -> \ "93b45fb7-ce82-4eec-8e52-84d5f26e06f8"] }, Closed]] }, Closed]], Cell[CellGroupData[{ Cell[28150, 578, 94, 0, 106, "Section", "ExpressionUUID" -> \ "7fd40190-2a68-4c43-958b-a5505ac2de0b"], Cell[CellGroupData[{ Cell[28269, 582, 87, 0, 94, "Subsection", "ExpressionUUID" -> \ "724b7e9b-3430-4949-bbe6-87b942ed1d1f"], Cell[CellGroupData[{ Cell[28381, 586, 93, 0, 76, "Subsubsection", "ExpressionUUID" -> \ "ae711093-6fb7-427e-bfda-ac3baf2d3524"], Cell[28477, 588, 103, 0, 62, "Text", "ExpressionUUID" -> \ "bd0e67ab-9c9f-48d8-9d65-9426e9854831"], Cell[28583, 590, 281, 8, 215, "Code", "ExpressionUUID" -> \ "d596caea-e3e2-406e-91db-a6b6172a58a4"], Cell[CellGroupData[{ Cell[28889, 602, 179, 4, 124, "Input", "ExpressionUUID" -> \ "6656aa22-6087-4f86-aa7e-5e4315b04b9b"], Cell[29071, 608, 225, 6, 122, "Output", "ExpressionUUID" -> \ "d6efdfe0-2fe8-4411-99ef-96b2507fc967"] }, Open ]] }, Open ]] }, Open ]] }, Open ]] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[29393, 624, 83, 0, 109, "Subtitle", "ExpressionUUID" -> \ "e63d0837-5932-4492-850a-185c29a65465"], Cell[29479, 626, 89, 0, 64, "Subsubtitle", "ExpressionUUID" -> \ "147ffc62-9c50-42e0-8bb6-4e6f341917ff"], Cell[CellGroupData[{ Cell[29593, 630, 75, 0, 58, "Item", "ExpressionUUID" -> \ "34b9351e-10a2-44f9-96ad-83cc61f5de1d"], Cell[29671, 632, 94, 0, 44, "ItemParagraph", "ExpressionUUID" -> \ "951d0623-f8eb-468f-9725-fd25339b0927"], Cell[CellGroupData[{ Cell[29790, 636, 81, 0, 49, "Subitem", "ExpressionUUID" -> \ "e768f431-c1a5-4efd-967b-57610de6e0fd"], Cell[29874, 638, 100, 0, 43, "SubitemParagraph", "ExpressionUUID" -> \ "f4f97d73-271b-4cb9-907a-82f0c322c66f"], Cell[CellGroupData[{ Cell[29999, 642, 87, 0, 48, "Subsubitem", "ExpressionUUID" -> \ "7a5202ea-b4fe-42c0-a728-2651c2e3de6a"], Cell[30089, 644, 106, 0, 42, "SubsubitemParagraph", "ExpressionUUID" -> \ "929584ed-4c57-4d92-aad4-44aa5b6f50b2"] }, Open ]] }, Open ]], Cell[30222, 648, 92, 0, 61, "ItemNumbered", "ExpressionUUID" -> \ "0c015301-f354-4503-a0f0-5fecc1365a73"], Cell[CellGroupData[{ Cell[30339, 652, 98, 0, 49, "SubitemNumbered", "ExpressionUUID" -> \ "cf8b8d5c-b269-43ca-9d06-5cce172f36d2"], Cell[30440, 654, 104, 0, 48, "SubsubitemNumbered", "ExpressionUUID" -> \ "bd4e2993-585b-4c12-b3e5-803a82339010"] }, Open ]] }, Open ]], Cell[30571, 658, 315, 9, 96, "InlineFormula", "ExpressionUUID" -> \ "23a7b620-71de-4d57-b9c4-21d6d1b62c9b"], Cell[30889, 669, 285, 9, 120, "DisplayFormula", "ExpressionUUID" -> \ "30a560f7-f497-4494-b8b0-495f9b331b8c"], Cell[31177, 680, 293, 9, 120, "DisplayFormulaNumbered", "ExpressionUUID" -> \ "0a8a6170-16fa-40ca-a6f7-8149e6b6e65e"], Cell[31473, 691, 119, 5, 197, "Program", "ExpressionUUID" -> \ "276f47a0-cae2-469e-ac16-09f84352c8a5"] }, Open ]] }, Open ]] } ] *)