use mathru::analysis::interpolation::spline::{CubicSpline, CubicSplineConstraint}; use plotters::prelude::*; fn main() { let x = vec![-2.0, 0.0, 3.0]; let y = vec![6.0, 2.0, 4.0]; let cubic_spline = CubicSpline::interpolate(&x, &y, CubicSplineConstraint::Natural); let x_start: f64 = -2.0; let x_end: f64 = 3.0; let length: usize = 500; let mut graph_1: Vec<(f64, f64)> = Vec::with_capacity(length); for i in 0..length { let x: f64 = (x_end - x_start) / (length as f64) * (i as f64) + x_start; graph_1.push((x, cubic_spline.eval(x))); } let root_area = BitMapBackend::new("./figures/natural_cubic_spline.png", (400, 400)).into_drawing_area(); root_area.fill(&WHITE).unwrap(); let mut ctx = ChartBuilder::on(&root_area) .margin(20) .set_label_area_size(LabelAreaPosition::Left, 40) .set_label_area_size(LabelAreaPosition::Bottom, 40) .caption("Natural cubic spline interpolation", ("Arial", 25)) .build_cartesian_2d(x_start - 0.5..x_end + 0.5, 0.0f64..6.5f64) .unwrap(); ctx.configure_mesh() .x_desc("x") .y_desc("y") .axis_desc_style(("sans-serif", 15).into_font()) .draw() .unwrap(); ctx.draw_series(LineSeries::new(graph_1, BLUE)).unwrap(); let points: Vec<(f64, f64)> = x.into_iter().zip(y).map(|(x, y)| (x, y)).collect(); ctx.draw_series( points .iter() .map(|point| Circle::new(*point, 2, BLUE.filled())), ) .unwrap(); }