#![forbid(unsafe_code)] use onnxruntime::{ environment::Environment, ndarray::Array, tensor::OrtOwnedTensor, tensor::{FromArray, InputTensor}, GraphOptimizationLevel, LoggingLevel, }; use tracing::Level; use tracing_subscriber::FmtSubscriber; type Error = Box; fn main() { if let Err(e) = run() { eprintln!("Error: {}", e); std::process::exit(1); } } fn run() -> Result<(), Error> { // Setup the example's log level. // NOTE: ONNX Runtime's log level is controlled separately when building the environment. let subscriber = FmtSubscriber::builder() .with_max_level(Level::TRACE) .finish(); tracing::subscriber::set_global_default(subscriber).expect("setting default subscriber failed"); let environment = Environment::builder() .with_name("test") // The ONNX Runtime's log level can be different than the one of the wrapper crate or the application. .with_log_level(LoggingLevel::Info) .build()?; let mut session = environment .new_session_builder()? .with_optimization_level(GraphOptimizationLevel::Basic)? .with_number_threads(1)? // NOTE: The example uses SqueezeNet 1.0 (ONNX version: 1.3, Opset version: 8), // _not_ SqueezeNet 1.1 as downloaded by '.with_model_downloaded(ImageClassification::SqueezeNet)' // Obtain it with: // curl -LO "https://github.com/onnx/models/raw/master/vision/classification/squeezenet/model/squeezenet1.0-8.onnx" .with_model_from_file("squeezenet1.0-8.onnx")?; let input0_shape: Vec = session.inputs[0].dimensions().map(|d| d.unwrap()).collect(); let output0_shape: Vec = session.outputs[0] .dimensions() .map(|d| d.unwrap()) .collect(); assert_eq!(input0_shape, [1, 3, 224, 224]); assert_eq!(output0_shape, [1, 1000, 1, 1]); // initialize input data with values in [0.0, 1.0] let n: u32 = session.inputs[0] .dimensions .iter() .map(|d| d.unwrap()) .product(); let array = Array::linspace(0.0_f32, 1.0, n as usize) .into_shape(input0_shape) .unwrap(); let input_tensor_values = vec![InputTensor::from_array(array)]; let outputs: Vec> = session.run(input_tensor_values)?; assert_eq!(outputs[0].shape(), output0_shape.as_slice()); for i in 0..5 { println!("Score for class [{}] = {}", i, outputs[0][[0, i, 0, 0]]); } Ok(()) }