use std::{ fs, io::{self, BufRead, BufReader}, path::Path, time::Duration, }; use onnxruntime::error::OrtDownloadError; use onnxruntime::tensor::{FromArray, InputTensor, OrtOwnedTensor}; mod download { use super::*; use image::{imageops::FilterType, ImageBuffer, Luma, Pixel, Rgb}; use ndarray::s; use test_env_log::test; use onnxruntime::{ download::vision::{DomainBasedImageClassification, ImageClassification}, environment::Environment, GraphOptimizationLevel, LoggingLevel, }; #[test] fn squeezenet_mushroom() { const IMAGE_TO_LOAD: &str = "mushroom.png"; let environment = Environment::builder() .with_name("integration_test") .with_log_level(LoggingLevel::Warning) .build() .unwrap(); let mut session = environment .new_session_builder() .unwrap() .with_optimization_level(GraphOptimizationLevel::Basic) .unwrap() .with_number_threads(1) .unwrap() .with_model_downloaded(ImageClassification::SqueezeNet) .expect("Could not download model from file"); let class_labels = get_imagenet_labels().unwrap(); let input0_shape: Vec = session.inputs[0].dimensions().map(|d| d.unwrap()).collect(); let output0_shape: Vec = session.outputs[0] .dimensions() .map(|d| d.unwrap()) .collect(); assert_eq!(input0_shape, [1, 3, 224, 224]); assert_eq!(output0_shape, [1, 1000]); // Load image and resize to model's shape, converting to RGB format let image_buffer: ImageBuffer, Vec> = image::open( Path::new(env!("CARGO_MANIFEST_DIR")) .join("tests") .join("data") .join(IMAGE_TO_LOAD), ) .unwrap() .resize( input0_shape[2] as u32, input0_shape[3] as u32, FilterType::Nearest, ) .to_rgb8(); // Python: // # image[y, x, RGB] // # x==0 --> left // # y==0 --> top // See https://github.com/onnx/models/blob/master/vision/classification/imagenet_inference.ipynb // for pre-processing image. // WARNING: Note order of declaration of arguments: (_,c,j,i) let mut array = ndarray::Array::from_shape_fn((1, 3, 224, 224), |(_, c, j, i)| { let pixel = image_buffer.get_pixel(i as u32, j as u32); let channels = pixel.channels(); // range [0, 255] -> range [0, 1] (channels[c] as f32) / 255.0 }); // Normalize channels to mean=[0.485, 0.456, 0.406] and std=[0.229, 0.224, 0.225] let mean = [0.485, 0.456, 0.406]; let std = [0.229, 0.224, 0.225]; for c in 0..3 { let mut channel_array = array.slice_mut(s![0, c, .., ..]); channel_array -= mean[c]; channel_array /= std[c]; } // Batch of 1 let input_tensor_values = vec![InputTensor::from_array(array)]; // Perform the inference let outputs: Vec< onnxruntime::tensor::OrtOwnedTensor>, > = session.run(input_tensor_values).unwrap(); // Downloaded model does not have a softmax as final layer; call softmax on second axis // and iterate on resulting probabilities, creating an index to later access labels. let output: &OrtOwnedTensor = &outputs[0]; let mut probabilities: Vec<(usize, f32)> = output .softmax(ndarray::Axis(1)) .iter() .copied() .enumerate() .collect::>(); // Sort probabilities so highest is at beginning of vector. probabilities.sort_unstable_by(|a, b| b.1.partial_cmp(&a.1).unwrap()); assert_eq!( class_labels[probabilities[0].0], "n07734744 mushroom", "Expecting class for {} to be a mushroom", IMAGE_TO_LOAD ); assert_eq!( probabilities[0].0, 947, "Expecting class for {} to be a mushroom (index 947 in labels file)", IMAGE_TO_LOAD ); // for i in 0..5 { // println!( // "class={} ({}); probability={}", // labels[probabilities[i].0], probabilities[i].0, probabilities[i].1 // ); // } } #[test] fn mnist_5() { const IMAGE_TO_LOAD: &str = "mnist_5.jpg"; let environment = Environment::builder() .with_name("integration_test") .with_log_level(LoggingLevel::Warning) .build() .unwrap(); let mut session = environment .new_session_builder() .unwrap() .with_optimization_level(GraphOptimizationLevel::Basic) .unwrap() .with_number_threads(1) .unwrap() .with_model_downloaded(DomainBasedImageClassification::Mnist) .expect("Could not download model from file"); let input0_shape: Vec = session.inputs[0].dimensions().map(|d| d.unwrap()).collect(); let output0_shape: Vec = session.outputs[0] .dimensions() .map(|d| d.unwrap()) .collect(); assert_eq!(input0_shape, [1, 1, 28, 28]); assert_eq!(output0_shape, [1, 10]); // Load image and resize to model's shape, converting to RGB format let image_buffer: ImageBuffer, Vec> = image::open( Path::new(env!("CARGO_MANIFEST_DIR")) .join("tests") .join("data") .join(IMAGE_TO_LOAD), ) .unwrap() .resize( input0_shape[2] as u32, input0_shape[3] as u32, FilterType::Nearest, ) .to_luma8(); let array = ndarray::Array::from_shape_fn((1, 1, 28, 28), |(_, c, j, i)| { let pixel = image_buffer.get_pixel(i as u32, j as u32); let channels = pixel.channels(); // range [0, 255] -> range [0, 1] (channels[c] as f32) / 255.0 }); // Batch of 1 let input_tensor_values = vec![InputTensor::from_array(array)]; // Perform the inference let outputs: Vec< onnxruntime::tensor::OrtOwnedTensor>, > = session.run(input_tensor_values).unwrap(); let output: &OrtOwnedTensor = &outputs[0]; let mut probabilities: Vec<(usize, f32)> = output .softmax(ndarray::Axis(1)) .iter() .copied() .enumerate() .collect::>(); // Sort probabilities so highest is at beginning of vector. probabilities.sort_unstable_by(|a, b| b.1.partial_cmp(&a.1).unwrap()); assert_eq!( probabilities[0].0, 5, "Expecting class for {} is '5' (not {})", IMAGE_TO_LOAD, probabilities[0].0 ); } // This test verifies that dynamically sized inputs and outputs work. It loads and runs // upsample.onnx, which was produced via: // // ``` // import subprocess // from tensorflow import keras // // m = keras.Sequential([ // keras.layers.UpSampling2D(size=2) // ]) // m.build(input_shape=(None, None, None, 3)) // m.summary() // m.save('saved_model') // // subprocess.check_call([ // 'python', '-m', 'tf2onnx.convert', // '--saved-model', 'saved_model', // '--opset', '12', // '--output', 'upsample.onnx', // ]) // ``` #[test] fn upsample() { const IMAGE_TO_LOAD: &str = "mushroom.png"; let environment = Environment::builder() .with_name("integration_test") .with_log_level(LoggingLevel::Warning) .build() .unwrap(); let mut session = environment .new_session_builder() .unwrap() .with_optimization_level(GraphOptimizationLevel::Basic) .unwrap() .with_number_threads(1) .unwrap() .with_model_from_file( Path::new(env!("CARGO_MANIFEST_DIR")) .join("tests") .join("data") .join("upsample.onnx"), ) .expect("Could not open model from file"); assert_eq!( session.inputs[0].dimensions().collect::>(), [None, None, None, Some(3)] ); assert_eq!( session.outputs[0].dimensions().collect::>(), [None, None, None, Some(3)] ); // Load image, converting to RGB format let image_buffer: ImageBuffer, Vec> = image::open( Path::new(env!("CARGO_MANIFEST_DIR")) .join("tests") .join("data") .join(IMAGE_TO_LOAD), ) .unwrap() .to_rgb8(); let array = ndarray::Array::from_shape_fn((1, 224, 224, 3), |(_, j, i, c)| { let pixel = image_buffer.get_pixel(i as u32, j as u32); let channels = pixel.channels(); // range [0, 255] -> range [0, 1] (channels[c] as f32) / 255.0 }); // Just one input let input_tensor_values = vec![InputTensor::from_array(array)]; // Perform the inference let outputs: Vec< onnxruntime::tensor::OrtOwnedTensor>, > = session.run(input_tensor_values).unwrap(); assert_eq!(outputs.len(), 1); let output = &outputs[0]; // The image should have doubled in size assert_eq!(output.shape(), [1, 448, 448, 3]); } } fn get_imagenet_labels() -> Result, OrtDownloadError> { // Download the ImageNet class labels, matching SqueezeNet's classes. let labels_path = Path::new(env!("CARGO_MANIFEST_DIR")).join("synset.txt"); if !labels_path.exists() { let url = "https://s3.amazonaws.com/onnx-model-zoo/synset.txt"; println!("Downloading {:?} to {:?}...", url, labels_path); let resp = ureq::get(url) .timeout(Duration::from_secs(180)) // 3 minutes .call() .map_err(Box::new) .map_err(OrtDownloadError::UreqError)?; assert!(resp.has("Content-Length")); let len = resp .header("Content-Length") .and_then(|s| s.parse::().ok()) .unwrap(); println!("Downloading {} bytes...", len); let mut reader = resp.into_reader(); let f = fs::File::create(&labels_path).unwrap(); let mut writer = io::BufWriter::new(f); let bytes_io_count = io::copy(&mut reader, &mut writer).unwrap(); assert_eq!(bytes_io_count, len as u64); } let file = BufReader::new(fs::File::open(labels_path).unwrap()); file.lines() .map(|line| line.map_err(|io_err| OrtDownloadError::IoError(io_err))) .collect() }