# mcmf [![Version](https://img.shields.io/crates/v/mcmf.svg)](https://crates.io/crates/mcmf) This crate is for solving instances of the [minimum cost maximum flow problem](https://en.wikipedia.org/wiki/Minimum-cost_flow_problem). It uses the network simplex algorithm from the [LEMON](http://lemon.cs.elte.hu/trac/lemon) graph optimization library. A number of problems are special cases of min cost max flow, including max flow, single-source shortest path, and maximum weighted matching on a bipartite graph. As such, this crate can solve all of the above problems, though it may potentially be less efficient than a specialized algorithm. See the [documentation](https://docs.rs/mcmf). # Example ```rust use mcmf::{GraphBuilder, Vertex, Cost, Capacity}; let (cost, paths) = GraphBuilder::new() .add_edge(Vertex::Source, "Vancouver", Capacity(2), Cost(0)) .add_edge("Vancouver", "Toronto", Capacity(2), Cost(100)) .add_edge("Toronto", "Halifax", Capacity(1), Cost(150)) .add_edge("Vancouver", "Halifax", Capacity(5), Cost(400)) .add_edge("Halifax", Vertex::Sink, Capacity(2), Cost(0)) .mcmf(); assert_eq!(cost, 650); assert_eq!(cost, paths.iter().map(|path| path.cost()).sum()); assert_eq!(paths.len(), 2); assert!( paths[0].vertices() == vec![ &Vertex::Source, &Vertex::Node("Vancouver"), &Vertex::Node("Halifax"), &Vertex::Sink]); assert!( paths[1].vertices() == vec![ &Vertex::Source, &Vertex::Node("Vancouver"), &Vertex::Node("Toronto"), &Vertex::Node("Halifax"), &Vertex::Sink]); ```