/***************************************************************************** * McPAT/CACTI * SOFTWARE LICENSE AGREEMENT * Copyright 2012 Hewlett-Packard Development Company, L.P. * All Rights Reserved * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer; * redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution; * neither the name of the copyright holders nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.” * ***************************************************************************/ #include "basic_circuit.h" #include "parameter.h" #include #include #include uint32_t _log2(uint64_t num) { uint32_t log2 = 0; if (num == 0) { std::cerr << "log0?" << std::endl; exit(1); } while (num > 1) { num = (num >> 1); log2++; } return log2; } bool is_pow2(int64_t val) { if (val <= 0) { return false; } else if (val == 1) { return true; } else { return (_log2(val) != _log2(val-1)); } } int powers (int base, int n) { int i, p; p = 1; for (i = 1; i <= n; ++i) p *= base; return p; } /*----------------------------------------------------------------------*/ double logtwo (double x) { assert(x > 0); return ((double) (log (x) / log (2.0))); } /*----------------------------------------------------------------------*/ double gate_C( double width, double wirelength, bool _is_dram, bool _is_cell, bool _is_wl_tr, bool _is_sleep_tx) { const TechnologyParameter::DeviceType * dt; if (_is_dram && _is_cell) { dt = &g_tp.dram_acc; //DRAM cell access transistor } else if (_is_dram && _is_wl_tr) { dt = &g_tp.dram_wl; //DRAM wordline transistor } else if (!_is_dram && _is_cell) { dt = &g_tp.sram_cell; // SRAM cell access transistor } else if (_is_sleep_tx) { dt = &g_tp.sleep_tx; // Sleep transistor } else { dt = &g_tp.peri_global; } return (dt->C_g_ideal + dt->C_overlap + 3*dt->C_fringe)*width + dt->l_phy*Cpolywire; } // returns gate capacitance in Farads // actually this function is the same as gate_C() now double gate_C_pass( double width, // gate width in um (length is Lphy_periph_global) double wirelength, // poly wire length going to gate in lambda bool _is_dram, bool _is_cell, bool _is_wl_tr, bool _is_sleep_tx) { // v5.0 const TechnologyParameter::DeviceType * dt; if ((_is_dram) && (_is_cell)) { dt = &g_tp.dram_acc; //DRAM cell access transistor } else if ((_is_dram) && (_is_wl_tr)) { dt = &g_tp.dram_wl; //DRAM wordline transistor } else if ((!_is_dram) && _is_cell) { dt = &g_tp.sram_cell; // SRAM cell access transistor } else if (_is_sleep_tx) { dt = &g_tp.sleep_tx; // Sleep transistor } else { dt = &g_tp.peri_global; } return (dt->C_g_ideal + dt->C_overlap + 3*dt->C_fringe)*width + dt->l_phy*Cpolywire; } double drain_C_( double width, int nchannel, int stack, int next_arg_thresh_folding_width_or_height_cell, double fold_dimension, bool _is_dram, bool _is_cell, bool _is_wl_tr, bool _is_sleep_tx) { double w_folded_tr; const TechnologyParameter::DeviceType * dt; if ((_is_dram) && (_is_cell)) { dt = &g_tp.dram_acc; // DRAM cell access transistor } else if ((_is_dram) && (_is_wl_tr)) { dt = &g_tp.dram_wl; // DRAM wordline transistor } else if ((!_is_dram) && _is_cell) { dt = &g_tp.sram_cell; // SRAM cell access transistor } else if (_is_sleep_tx) { dt = &g_tp.sleep_tx; // Sleep transistor } else { dt = &g_tp.peri_global; } double c_junc_area = dt->C_junc; double c_junc_sidewall = dt->C_junc_sidewall; double c_fringe = 2*dt->C_fringe; double c_overlap = 2*dt->C_overlap; double drain_C_metal_connecting_folded_tr = 0; // determine the width of the transistor after folding (if it is getting folded) if (next_arg_thresh_folding_width_or_height_cell == 0) { // interpret fold_dimension as the the folding width threshold // i.e. the value of transistor width above which the transistor gets folded w_folded_tr = fold_dimension; } else { // interpret fold_dimension as the height of the cell that this transistor is part of. double h_tr_region = fold_dimension - 2 * g_tp.HPOWERRAIL; // TODO : w_folded_tr must come from Component::compute_gate_area() double ratio_p_to_n = 2.0 / (2.0 + 1.0); if (nchannel) { w_folded_tr = (1 - ratio_p_to_n) * (h_tr_region - g_tp.MIN_GAP_BET_P_AND_N_DIFFS); } else { w_folded_tr = ratio_p_to_n * (h_tr_region - g_tp.MIN_GAP_BET_P_AND_N_DIFFS); } } int num_folded_tr = (int) (ceil(width / w_folded_tr)); if (num_folded_tr < 2) { w_folded_tr = width; } double total_drain_w = (g_tp.w_poly_contact + 2 * g_tp.spacing_poly_to_contact) + // only for drain (stack - 1) * g_tp.spacing_poly_to_poly; double drain_h_for_sidewall = w_folded_tr; double total_drain_height_for_cap_wrt_gate = w_folded_tr + 2 * w_folded_tr * (stack - 1); if (num_folded_tr > 1) { total_drain_w += (num_folded_tr - 2) * (g_tp.w_poly_contact + 2 * g_tp.spacing_poly_to_contact) + (num_folded_tr - 1) * ((stack - 1) * g_tp.spacing_poly_to_poly); if (num_folded_tr%2 == 0) { drain_h_for_sidewall = 0; } total_drain_height_for_cap_wrt_gate *= num_folded_tr; drain_C_metal_connecting_folded_tr = g_tp.wire_local.C_per_um * total_drain_w; } double drain_C_area = c_junc_area * total_drain_w * w_folded_tr; double drain_C_sidewall = c_junc_sidewall * (drain_h_for_sidewall + 2 * total_drain_w); double drain_C_wrt_gate = (c_fringe + c_overlap) * total_drain_height_for_cap_wrt_gate; return (drain_C_area + drain_C_sidewall + drain_C_wrt_gate + drain_C_metal_connecting_folded_tr); } double tr_R_on( double width, int nchannel, int stack, bool _is_dram, bool _is_cell, bool _is_wl_tr, bool _is_sleep_tx) { const TechnologyParameter::DeviceType * dt; if ((_is_dram) && (_is_cell)) { dt = &g_tp.dram_acc; //DRAM cell access transistor } else if ((_is_dram) && (_is_wl_tr)) { dt = &g_tp.dram_wl; //DRAM wordline transistor } else if ((!_is_dram) && _is_cell) { dt = &g_tp.sram_cell; // SRAM cell access transistor } else if (_is_sleep_tx) { dt = &g_tp.sleep_tx; // Sleep transistor } else { dt = &g_tp.peri_global; } double restrans = (nchannel) ? dt->R_nch_on : dt->R_pch_on; return (stack * restrans / width); } /* This routine operates in reverse: given a resistance, it finds * the transistor width that would have this R. It is used in the * data wordline to estimate the wordline driver size. */ // returns width in um double R_to_w( double res, int nchannel, bool _is_dram, bool _is_cell, bool _is_wl_tr, bool _is_sleep_tx) { const TechnologyParameter::DeviceType * dt; if ((_is_dram) && (_is_cell)) { dt = &g_tp.dram_acc; //DRAM cell access transistor } else if ((_is_dram) && (_is_wl_tr)) { dt = &g_tp.dram_wl; //DRAM wordline transistor } else if ((!_is_dram) && (_is_cell)) { dt = &g_tp.sram_cell; // SRAM cell access transistor } else if (_is_sleep_tx) { dt = &g_tp.sleep_tx; // Sleep transistor } else { dt = &g_tp.peri_global; } double restrans = (nchannel) ? dt->R_nch_on : dt->R_pch_on; return (restrans / res); } double pmos_to_nmos_sz_ratio( bool _is_dram, bool _is_wl_tr, bool _is_sleep_tx) { double p_to_n_sizing_ratio; if ((_is_dram) && (_is_wl_tr)) { //DRAM wordline transistor p_to_n_sizing_ratio = g_tp.dram_wl.n_to_p_eff_curr_drv_ratio; } else if (_is_sleep_tx) { p_to_n_sizing_ratio = g_tp.sleep_tx.n_to_p_eff_curr_drv_ratio; // Sleep transistor } else { //DRAM or SRAM all other transistors p_to_n_sizing_ratio = g_tp.peri_global.n_to_p_eff_curr_drv_ratio; } return p_to_n_sizing_ratio; } // "Timing Models for MOS Circuits" by Mark Horowitz, 1984 double horowitz( double inputramptime, // input rise time double tf, // time constant of gate double vs1, // threshold voltage1/Vdd double vs2, // threshold voltage2/vdd int rise) // whether input rises or fall { if (inputramptime == 0 && vs1 == vs2) { return tf * (vs1 < 1 ? -log(vs1) : log(vs1)); } double a, b, td; a = inputramptime / tf; if (rise == RISE) { b = 0.5; td = tf * sqrt(log(vs1)*log(vs1) + 2*a*b*(1.0 - vs1)) + tf*(log(vs1) - log(vs2)); } else { b = 0.4; td = tf * sqrt(log(1.0 - vs1)*log(1.0 - vs1) + 2*a*b*(vs1)) + tf*(log(1.0 - vs1) - log(1.0 - vs2)); } return (td); } double cmos_Ileak( double nWidth, double pWidth, bool _is_dram, bool _is_cell, bool _is_wl_tr, bool _is_sleep_tx) { TechnologyParameter::DeviceType * dt; if ((!_is_dram)&&(_is_cell)) { //SRAM cell access transistor dt = &(g_tp.sram_cell); } else if ((_is_dram)&&(_is_wl_tr)) { //DRAM wordline transistor dt = &(g_tp.dram_wl); } else if (_is_sleep_tx) { dt = &g_tp.sleep_tx; // Sleep transistor } else { //DRAM or SRAM all other transistors dt = &(g_tp.peri_global); } return nWidth*dt->I_off_n + pWidth*dt->I_off_p; } int factorial(int n, int m) { int fa = m, i; for (i=m+1; i<=n; i++) fa *=i; return fa; } int combination(int n, int m) { int ret; ret = factorial(n, m+1) / factorial(n - m); return ret; } double simplified_nmos_Isat( double nwidth, bool _is_dram, bool _is_cell, bool _is_wl_tr, bool _is_sleep_tx) { TechnologyParameter::DeviceType * dt; if ((!_is_dram)&&(_is_cell)) { //SRAM cell access transistor dt = &(g_tp.sram_cell); } else if ((_is_dram)&&(_is_wl_tr)) { //DRAM wordline transistor dt = &(g_tp.dram_wl); } else if (_is_sleep_tx) { dt = &g_tp.sleep_tx; // Sleep transistor } else { //DRAM or SRAM all other transistors dt = &(g_tp.peri_global); } return nwidth * dt->I_on_n; } double simplified_pmos_Isat( double pwidth, bool _is_dram, bool _is_cell, bool _is_wl_tr, bool _is_sleep_tx) { TechnologyParameter::DeviceType * dt; if ((!_is_dram)&&(_is_cell)) { //SRAM cell access transistor dt = &(g_tp.sram_cell); } else if ((_is_dram)&&(_is_wl_tr)) { //DRAM wordline transistor dt = &(g_tp.dram_wl); } else if (_is_sleep_tx) { dt = &g_tp.sleep_tx; // Sleep transistor } else { //DRAM or SRAM all other transistors dt = &(g_tp.peri_global); } return pwidth * dt->I_on_n/dt->n_to_p_eff_curr_drv_ratio; } double simplified_nmos_leakage( double nwidth, bool _is_dram, bool _is_cell, bool _is_wl_tr, bool _is_sleep_tx) { TechnologyParameter::DeviceType * dt; if ((!_is_dram)&&(_is_cell)) { //SRAM cell access transistor dt = &(g_tp.sram_cell); } else if ((_is_dram)&&(_is_wl_tr)) { //DRAM wordline transistor dt = &(g_tp.dram_wl); } else if (_is_sleep_tx) { dt = &g_tp.sleep_tx; // Sleep transistor } else { //DRAM or SRAM all other transistors dt = &(g_tp.peri_global); } return nwidth * dt->I_off_n; } double simplified_pmos_leakage( double pwidth, bool _is_dram, bool _is_cell, bool _is_wl_tr, bool _is_sleep_tx) { TechnologyParameter::DeviceType * dt; if ((!_is_dram)&&(_is_cell)) { //SRAM cell access transistor dt = &(g_tp.sram_cell); } else if ((_is_dram)&&(_is_wl_tr)) { //DRAM wordline transistor dt = &(g_tp.dram_wl); } else if (_is_sleep_tx) { dt = &g_tp.sleep_tx; // Sleep transistor } else { //DRAM or SRAM all other transistors dt = &(g_tp.peri_global); } return pwidth * dt->I_off_p; } double cmos_Ig_n( double nWidth, bool _is_dram, bool _is_cell, bool _is_wl_tr, bool _is_sleep_tx) { TechnologyParameter::DeviceType * dt; if ((!_is_dram)&&(_is_cell)) { //SRAM cell access transistor dt = &(g_tp.sram_cell); } else if ((_is_dram)&&(_is_wl_tr)) { //DRAM wordline transistor dt = &(g_tp.dram_wl); } else if (_is_sleep_tx) { dt = &g_tp.sleep_tx; // Sleep transistor } else { //DRAM or SRAM all other transistors dt = &(g_tp.peri_global); } return nWidth*dt->I_g_on_n; } double cmos_Ig_p( double pWidth, bool _is_dram, bool _is_cell, bool _is_wl_tr, bool _is_sleep_tx) { TechnologyParameter::DeviceType * dt; if ((!_is_dram)&&(_is_cell)) { //SRAM cell access transistor dt = &(g_tp.sram_cell); } else if ((_is_dram)&&(_is_wl_tr)) { //DRAM wordline transistor dt = &(g_tp.dram_wl); } else if (_is_sleep_tx) { dt = &g_tp.sleep_tx; // Sleep transistor } else { //DRAM or SRAM all other transistors dt = &(g_tp.peri_global); } return pWidth*dt->I_g_on_p; } double cmos_Isub_leakage( double nWidth, double pWidth, int fanin, enum Gate_type g_type, bool _is_dram, bool _is_cell, bool _is_wl_tr, bool _is_sleep_tx, enum Half_net_topology topo) { assert (fanin>=1); double nmos_leak = simplified_nmos_leakage(nWidth, _is_dram, _is_cell, _is_wl_tr, _is_sleep_tx); double pmos_leak = simplified_pmos_leakage(pWidth, _is_dram, _is_cell, _is_wl_tr, _is_sleep_tx); double Isub=0; int num_states; int num_off_tx; num_states = int(pow(2.0, fanin)); switch (g_type) { case nmos: if (fanin==1) { Isub = nmos_leak/num_states; } else { if (topo==parallel) { Isub=nmos_leak*fanin/num_states; //only when all tx are off, leakage power is non-zero. The possibility of this state is 1/num_states } else { for (num_off_tx=1; num_off_tx<=fanin; num_off_tx++) //when num_off_tx ==0 there is no leakage power { //Isub += nmos_leak*pow(UNI_LEAK_STACK_FACTOR,(num_off_tx-1))*(factorial(fanin)/(factorial(fanin, num_off_tx)*factorial(num_off_tx))); Isub += nmos_leak*pow(UNI_LEAK_STACK_FACTOR,(num_off_tx-1))*combination(fanin, num_off_tx); } Isub /=num_states; } } break; case pmos: if (fanin==1) { Isub = pmos_leak/num_states; } else { if (topo==parallel) { Isub=pmos_leak*fanin/num_states; //only when all tx are off, leakage power is non-zero. The possibility of this state is 1/num_states } else { for (num_off_tx=1; num_off_tx<=fanin; num_off_tx++) //when num_off_tx ==0 there is no leakage power { //Isub += pmos_leak*pow(UNI_LEAK_STACK_FACTOR,(num_off_tx-1))*(factorial(fanin)/(factorial(fanin, num_off_tx)*factorial(num_off_tx))); Isub += pmos_leak*pow(UNI_LEAK_STACK_FACTOR,(num_off_tx-1))*combination(fanin, num_off_tx); } Isub /=num_states; } } break; case inv: Isub = (nmos_leak + pmos_leak)/2; break; case nand: Isub += fanin*pmos_leak;//the pullup network for (num_off_tx=1; num_off_tx<=fanin; num_off_tx++) // the pulldown network { //Isub += nmos_leak*pow(UNI_LEAK_STACK_FACTOR,(num_off_tx-1))*(factorial(fanin)/(factorial(fanin, num_off_tx)*factorial(num_off_tx))); Isub += nmos_leak*pow(UNI_LEAK_STACK_FACTOR,(num_off_tx-1))*combination(fanin, num_off_tx); } Isub /=num_states; break; case nor: for (num_off_tx=1; num_off_tx<=fanin; num_off_tx++) // the pullup network { //Isub += pmos_leak*pow(UNI_LEAK_STACK_FACTOR,(num_off_tx-1))*(factorial(fanin)/(factorial(fanin, num_off_tx)*factorial(num_off_tx))); Isub += pmos_leak*pow(UNI_LEAK_STACK_FACTOR,(num_off_tx-1))*combination(fanin, num_off_tx); } Isub += fanin*nmos_leak;//the pulldown network Isub /=num_states; break; case tri: Isub += (nmos_leak + pmos_leak)/2;//enabled Isub += nmos_leak*UNI_LEAK_STACK_FACTOR; //disabled upper bound of leakage power Isub /=2; break; case tg: Isub = (nmos_leak + pmos_leak)/2; break; default: assert(0); break; } return Isub; } double cmos_Ig_leakage( double nWidth, double pWidth, int fanin, enum Gate_type g_type, bool _is_dram, bool _is_cell, bool _is_wl_tr, bool _is_sleep_tx, enum Half_net_topology topo) { assert (fanin>=1); double nmos_leak = cmos_Ig_n(nWidth, _is_dram, _is_cell, _is_wl_tr, _is_sleep_tx); double pmos_leak = cmos_Ig_p(pWidth, _is_dram, _is_cell, _is_wl_tr, _is_sleep_tx); double Ig_on=0; int num_states; int num_on_tx; num_states = int(pow(2.0, fanin)); switch (g_type) { case nmos: if (fanin==1) { Ig_on = nmos_leak/num_states; } else { if (topo==parallel) { for (num_on_tx=1; num_on_tx<=fanin; num_on_tx++) { Ig_on += nmos_leak*combination(fanin, num_on_tx)*num_on_tx; } } else { Ig_on += nmos_leak * fanin;//pull down network when all TXs are on. //num_on_tx is the number of on tx for (num_on_tx=1; num_on_tx