/** * \file dnn/test/aarch64/matrix_mul.cpp * MegEngine is Licensed under the Apache License, Version 2.0 (the "License") * * Copyright (c) 2014-2021 Megvii Inc. All rights reserved. * * Unless required by applicable law or agreed to in writing, * software distributed under the License is distributed on an * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or * implied. */ #include "test/aarch64/fixture.h" #include "test/common/benchmarker.h" #include "test/common/checker.h" #include "test/common/matrix_mul.h" #include "test/common/rng.h" #include "test/arm_common/cpuinfo_help.h" using namespace megdnn; using namespace test; TEST_F(AARCH64, MATRIX_MUL_FP32K8X12) { matrix_mul::check_matrix_mul( dtype::Float32{}, dtype::Float32{}, dtype::Float32{}, handle(), "AARCH64_F32K8X12X1"); } #if MGB_ENABLE_CPUINFO TEST_F(AARCH64, MATRIX_MUL_FP32K8X12_A53) { CpuInfoTmpReplace cpu_replace_guard(cpuinfo_uarch_cortex_a53); matrix_mul::check_matrix_mul( dtype::Float32{}, dtype::Float32{}, dtype::Float32{}, handle(), "AARCH64_F32K8X12X1"); } TEST_F(AARCH64, MATRIX_MUL_FP32K8X12_A55) { CpuInfoTmpReplace cpu_replace_guard(cpuinfo_uarch_cortex_a55); matrix_mul::check_matrix_mul( dtype::Float32{}, dtype::Float32{}, dtype::Float32{}, handle(), "AARCH64_F32K8X12X1"); } #endif TEST_F(AARCH64, MATRIX_MUL_FP32K4X16) { matrix_mul::check_matrix_mul( dtype::Float32{}, dtype::Float32{}, dtype::Float32{}, handle(), "AARCH64_F32K4X16X1"); } TEST_F(AARCH64, MATRIX_MUL_FP32_PACK_MK4) { matrix_mul::check_matrix_mul( dtype::Float32{}, dtype::Float32{}, dtype::Float32{}, handle(), "AARCH64_F32_MK4_K8X12X1", param::MatrixMul::Format::MK4, 1); } #if MGB_ENABLE_CPUINFO TEST_F(AARCH64, MATRIX_MUL_FP32_PACK_MK4_A53) { CpuInfoTmpReplace cpu_replace_guard(cpuinfo_uarch_cortex_a53); matrix_mul::check_matrix_mul( dtype::Float32{}, dtype::Float32{}, dtype::Float32{}, handle(), "AARCH64_F32_MK4_K8X12X1", param::MatrixMul::Format::MK4, 1); } TEST_F(AARCH64, MATRIX_MUL_FP32_PACK_MK4_A55) { CpuInfoTmpReplace cpu_replace_guard(cpuinfo_uarch_cortex_a55); matrix_mul::check_matrix_mul( dtype::Float32{}, dtype::Float32{}, dtype::Float32{}, handle(), "AARCH64_F32_MK4_K8X12X1", param::MatrixMul::Format::MK4, 1); } #endif TEST_F(AARCH64, MATRIX_MUL_FP32_MK4) { matrix_mul::check_matrix_mul( dtype::Float32{}, dtype::Float32{}, dtype::Float32{}, handle(), "AARCH64_F32_MK4_4x16", param::MatrixMul::Format::MK4, 1); } #if __ARM_FEATURE_FP16_VECTOR_ARITHMETIC TEST_F(AARCH64, MATRIX_MUL_F16_K8X24X1) { matrix_mul::check_matrix_mul( dtype::Float16{}, dtype::Float16{}, dtype::Float16{}, handle(), "AARCH64_F16_K8X24X1"); } TEST_F(AARCH64, MATRIX_MUL_F16_MK8) { matrix_mul::check_matrix_mul( dtype::Float16{}, dtype::Float16{}, dtype::Float16{}, handle(), "AARCH64_F16_MK8_8X8", param::MatrixMul::Format::MK8, 1); } #endif #if MGB_ENABLE_DOT TEST_F(AARCH64, MATRIX_MUL_INT8X8X32_K8X12X4_DOTPROD) { matrix_mul::check_matrix_mul( dtype::Int8{}, dtype::Int8{}, dtype::Int32{}, handle(), "AARCH64_INT8X8X32_K8X12X4_DOTPROD"); } TEST_F(AARCH64, MATRIX_MUL_INT8X8X32_MK4_8X12X4_DOTPROD) { std::vector args; for (size_t m : {1, 2, 3, 4, 5, 6, 7, 10, 11}) for (size_t n : {2, 3, 4, 5, 8, 12, 13, 14, 15, 16, 31}) for (size_t k : {1, 2, 3, 4, 5, 6, 7, 8, 16, 32, 33, 34}) args.emplace_back(m, n, k, 0); matrix_mul::check_matrix_mul( dtype::Int8{}, dtype::Int8{}, dtype::Int32{}, handle(), "AARCH64_INT8X8X32_MK4_8X12X4_DOTPROD", param::MatrixMul::Format::MK4_DOT, 1, 1e-3, std::move(args)); } #else TEST_F(AARCH64, MATRIX_MUL_INT8X8X32_K4X4X16) { matrix_mul::check_matrix_mul( dtype::Int8{}, dtype::Int8{}, dtype::Int32{}, handle(), "AARCH64_INT8X8X32_K4X4X16"); } TEST_F(AARCH64, MATRIX_MUL_INT8_MK4) { std::vector args; for (size_t m : {1, 2, 3, 4, 5, 7, 10, 11}) for (size_t n : {1, 2, 3, 4, 5, 8, 16, 24, 25, 32}) for (size_t k : {1, 2, 3, 4, 5, 6, 7, 8, 16, 32, 33, 34}) args.emplace_back(m, n, k, 0); matrix_mul::check_matrix_mul( dtype::Int8{}, dtype::Int8{}, dtype::Int32{}, handle(), "AARCH64_INT8X8X32_MK4_4X4X16", param::MatrixMul::Format::MK4, 1, 1e-3, std::move(args)); } TEST_F(AARCH64, MATRIX_MUL_INT8x8x16_MK4) { std::vector args; for (size_t m : {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17}) for (size_t n : {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 24}) for (size_t k : {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29}) args.emplace_back(m, n, k, 0); matrix_mul::check_matrix_mul( dtype::Int8{}, dtype::Int8{}, dtype::Int16{}, handle(), "AARCH64_INT8X8X16_MK4_K8X8X8", param::MatrixMul::Format::MK4, 1, 1e-3, std::move(args)); } TEST_F(AARCH64, MATRIX_MUL_MK4_8x8x16_4x4) { matrix_mul::check_matrix_mul( dtype::Int8{}, dtype::Int8{}, dtype::Int16{}, handle(), "AARCH64_INT8X8X16_MK4_4X4X8", param::MatrixMul::Format::MK4, 1); } TEST_F(AARCH64, MATRIX_MUL_MK4_8x8x16) { matrix_mul::check_matrix_mul( dtype::Int8{}, dtype::Int8{}, dtype::Int16{}, handle(), "AARCH64_INT8X8X16_MK4_16X12X4", param::MatrixMul::Format::MK4, 1); } TEST_F(AARCH64, MATRIX_MUL_INT8x8x32_K8x8x8) { matrix_mul::check_matrix_mul( dtype::Int8{}, dtype::Int8{}, dtype::Int32{}, handle(), "AARCH64_INT8X8X32_K8X8X8"); } #endif TEST_F(AARCH64, MATRIX_MUL_INT8x8x16_K8x8x8) { matrix_mul::check_matrix_mul( dtype::Int8{}, dtype::Int8{}, dtype::Int16{}, handle(), "AARCH64_INT8X8X16_K8X8X8"); } TEST_F(AARCH64, MATRIX_MUL_INT8x8x16_K4x4x16) { matrix_mul::check_matrix_mul( dtype::Int8{}, dtype::Int8{}, dtype::Int16{}, handle(), "AARCH64_INT8X8X16_K4X4X16"); } TEST_F(AARCH64, MATRIX_MUL_INT4x4x16_K8x8x8_QUANTIZEDS4) { param::MatrixMul param; param.transposeA = false; param.transposeB = false; Checker checker(handle()); checker.set_dtype(0, dtype::QuantizedS4{0.6}) .set_dtype(1, dtype::QuantizedS4{0.5}) .set_dtype(2, dtype::QuantizedS16{0.6 * 0.5}) .set_param(param); checker.set_before_exec_callback( AlgoChecker("AARCH64_INT4X4X16_K8X8X8")); auto run = [&](size_t M, size_t N, size_t K) { printf("M N K %zu %zu %zu \n", M, N, K); TensorShape A, B; if (param.transposeA) { A = TensorShape{K, M}; } else { A = TensorShape{M, K}; } if (param.transposeB) { B = TensorShape{N, K}; } else { B = TensorShape{K, N}; } checker.exec({A, B, {}}); }; for (size_t m : {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 16, 20}) for (size_t n : {2, 4, 6, 8, 10, 12, 14, 16, 24}) for (size_t k : {2, 4, 6, 8, 10, 12, 14, 16, 32}) run(m, n, k); for (size_t k = 4; k <= 256; k *= 8) { for (size_t m = 4; m <= 256; m *= 4) { for (size_t n = 4; n <= 256; n *= 4) { run(m, n, k); } } } param.transposeA = true; run(8, 8, 8); run(16, 8, 16); param.transposeB = true; run(8, 8, 8); run(16, 16, 16); } TEST_F(AARCH64, MATRIX_MUL_INT16x16x32_K12X8X1) { matrix_mul::check_matrix_mul( dtype::Int16{}, dtype::Int16{}, dtype::Int32{}, handle(), "AARCH64_INT16X16X32_K12X8X1"); } TEST_F(AARCH64, MATRIX_MUL_INT16x16x32_MK8) { matrix_mul::check_matrix_mul( dtype::Int16{}, dtype::Int16{}, dtype::Int32{}, handle(), "AARCH64_INT16X16X32_MK8_8X8", param::MatrixMul::Format::MK8, 1); } //! FIXME: need to add tests of GEMV and QUINT8 #if MEGDNN_WITH_BENCHMARK TEST_F(AARCH64, BENCHMARK_MATRIX_MUL_FP32_K4X16) { constexpr size_t RUNS = 50; param::MatrixMul param; param.transposeA = false; param.transposeB = false; Benchmarker benchmarker_K4X16(handle()); Benchmarker benchmarker_K12X8(handle()); benchmarker_K4X16.set_times(RUNS) .set_dtype(0, dtype::Float32{}) .set_dtype(1, dtype::Float32{}) .set_dtype(2, dtype::Float32{}) .set_param(param) .set_display(false); benchmarker_K4X16.set_before_exec_callback( AlgoChecker("AARCH64_F32K4X16X1")); benchmarker_K12X8.set_before_exec_callback( AlgoChecker("AARCH64_F32K8X12X1")); benchmarker_K12X8.set_times(RUNS) .set_dtype(0, dtype::Float32{}) .set_dtype(1, dtype::Float32{}) .set_dtype(2, dtype::Float32{}) .set_param(param) .set_display(false); auto run = [&](size_t M, size_t N, size_t K) { TensorShape A, B; if (param.transposeA) { A = TensorShape{K, M}; } else { A = TensorShape{M, K}; } if (param.transposeB) { B = TensorShape{N, K}; } else { B = TensorShape{K, N}; } auto k4x16_used = benchmarker_K4X16.exec({A, B, {}}) / RUNS; auto k12x8_used = benchmarker_K12X8.exec({A, B, {}}) / RUNS; float computations = 2.f * M * K * N * 1e-6; printf("run: {%zu{M} %zu{K} %zu{N}} k4x16: %f ms %f Gflops k12x8: %f " "ms " "%f Gflops k4x16_vs_k12x8: %f\n", M, K, N, k4x16_used, computations / k4x16_used, k12x8_used, computations / k12x8_used, k12x8_used / k4x16_used); }; run(256, 256, 128); run(384, 384, 384); for (size_t k = 4; k <= 256; k *= 8) { for (size_t m = 4; m <= 256; m *= 4) { for (size_t n = 4; n <= 256; n *= 4) { run(m, n, k); } printf("\n"); } printf("\n"); } } TEST_F(AARCH64, BENCHMARK_MATRIX_MUL_INT16_8X8X8) { constexpr size_t RUNS = 50; param::MatrixMul param; param.transposeA = false; param.transposeB = false; Benchmarker benchmarker_int(handle()); Benchmarker benchmarker_int32(handle()); benchmarker_int.set_times(RUNS) .set_dtype(0, dtype::Int8{}) .set_dtype(1, dtype::Int8{}) .set_dtype(2, dtype::Int16{}) .set_param(param) .set_display(false); benchmarker_int.set_before_exec_callback( AlgoChecker("AARCH64_INT8X8X16_K8X8X8")); benchmarker_int32.set_before_exec_callback( AlgoChecker("AARCH64_INT8X8X32_K8X8X8")); benchmarker_int32.set_times(RUNS) .set_dtype(0, dtype::Int8{}) .set_dtype(1, dtype::Int8{}) .set_dtype(2, dtype::Int32{}) .set_param(param) .set_display(false); Benchmarker benchmarker_float(handle()); benchmarker_float.set_param(param).set_display(false).set_times(RUNS); auto run = [&](size_t M, size_t N, size_t K) { TensorShape A, B; if (param.transposeA) { A = TensorShape{K, M}; } else { A = TensorShape{M, K}; } if (param.transposeB) { B = TensorShape{N, K}; } else { B = TensorShape{K, N}; } auto int_used = benchmarker_int.exec({A, B, {}}) / RUNS; auto float_used = benchmarker_float.exec({A, B, {}}) / RUNS; auto int32_used = benchmarker_int32.exec({A, B, {}}) / RUNS; float computations = 2.f * M * K * N * 1e-6; printf("run: {%zu{M} %zu{K} %zu{N}} float: %f ms %f Gflops int: %f ms " "%f Gflops speedup_vs_fp32: %f, speedup_vs_int32: %f\n", M, K, N, float_used, computations / float_used, int_used, computations / int_used, float_used / int_used, int32_used / int_used); }; run(256, 256, 256); for (size_t k = 4; k <= 256; k *= 8) { for (size_t m = 4; m <= 256; m *= 4) { for (size_t n = 4; n <= 256; n *= 4) { run(m, n, k); } std::cout << std::endl; } std::cout << std::endl; } } TEST_F(AARCH64, BENCHMARK_MATRIX_MUL_INT32_MK_4X4X16) { constexpr size_t RUNS = 50; param::MatrixMul param; param.transposeA = false; param.transposeB = false; Benchmarker benchmarker(handle()); Benchmarker benchmarker_mk4(handle()); benchmarker.set_times(RUNS) .set_dtype(0, dtype::Int8{}) .set_dtype(1, dtype::Int8{}) .set_dtype(2, dtype::Int32{}) .set_param(param) .set_display(false); benchmarker.set_before_exec_callback( AlgoChecker("AARCH64_INT8X8X32_K4X4X16")); param.format = MatrixMul::Param::Format::MK4; benchmarker_mk4.set_before_exec_callback( AlgoChecker("AARCH64_INT8X8X32_MK4_4X4X16")); benchmarker_mk4.set_times(RUNS) .set_dtype(0, dtype::Int8{}) .set_dtype(1, dtype::Int8{}) .set_dtype(2, dtype::Int32{}) .set_param(param) .set_display(false); auto run = [&](size_t M, size_t N, size_t K) { auto default_used = benchmarker.exec({{M, K}, {K, N}, {}}) / RUNS; auto mk_used = benchmarker_mk4.exec({{M / 4, K / 4, 4, 4}, {K / 4, N, 4}, {}}) / RUNS; float computations = 2.f * M * K * N * 1e-6; printf("run: {%zu{M} %zu{K} %zu{N}} normal: %f ms %f Gflops mk4: %f ms " "%f Gflops speedup_vs_normal: %f\n", M, K, N, default_used, computations / default_used, mk_used, computations / mk_used, default_used / mk_used); }; run(256, 256, 128); for (size_t k = 4; k <= 512; k *= 2) { for (size_t m = 4; m <= 512; m *= 2) { for (size_t n = 4; n <= 512; n *= 2) { run(m, n, k); } } std::cout << std::endl; } } TEST_F(AARCH64, BENCHMARK_MATRIX_MUL_MK4_8x8x16) { constexpr size_t RUNS = 50; param::MatrixMul param; param.transposeA = false; param.transposeB = false; Benchmarker benchmarker(handle()); Benchmarker benchmarker_mk4(handle()); Benchmarker benchmarker_mk4_16x12(handle()); benchmarker.set_times(RUNS) .set_dtype(0, dtype::Int8{}) .set_dtype(1, dtype::Int8{}) .set_dtype(2, dtype::Int16{}) .set_param(param) .set_display(false); benchmarker.set_before_exec_callback( AlgoChecker("AARCH64_INT8X8X16_K4X4X16")); param.format = MatrixMul::Param::Format::MK4; benchmarker_mk4.set_before_exec_callback( AlgoChecker("AARCH64_INT8X8X16_MK4_4X4X8")); benchmarker_mk4.set_times(RUNS) .set_dtype(0, dtype::Int8{}) .set_dtype(1, dtype::Int8{}) .set_dtype(2, dtype::Int16{}) .set_param(param) .set_display(false); benchmarker_mk4_16x12.set_before_exec_callback( AlgoChecker("AARCH64_INT8X8X16_MK4_16X12X4")); benchmarker_mk4_16x12.set_times(RUNS) .set_dtype(0, dtype::Int8{}) .set_dtype(1, dtype::Int8{}) .set_dtype(2, dtype::Int16{}) .set_param(param) .set_display(false); auto run = [&](size_t M, size_t N, size_t K) { auto default_used = benchmarker.exec({{M, K}, {K, N}, {}}) / RUNS; auto mk_used = benchmarker_mk4.exec({{M / 4, K / 4, 4, 4}, {K / 4, N, 4}, {}}) / RUNS; auto mk4_16x12_used = benchmarker_mk4_16x12.exec({{M / 4, K / 4, 4, 4}, {K / 4, N, 4}, {}}) / RUNS; float computations = 2.f * M * K * N * 1e-6; printf("run: {%zu{M} %zu{K} %zu{N}} normal: %f ms %f Gflops mk4: %f ms " "%f Gflops speedup: %f, mk4_16x12 %f Gflops speedup: %f\n", M, K, N, default_used, computations / default_used, mk_used, computations / mk_used, default_used / mk_used, computations / mk4_16x12_used, default_used / mk4_16x12_used); }; run(384, 384, 384); } TEST_F(AARCH64, BENCHMARK_4x4x16_vs_8x8x16) { constexpr size_t RUNS = 50; param::MatrixMul param; param.transposeA = false; param.transposeB = false; Benchmarker benchmarker(handle()); Benchmarker benchmarker_int4_4x4x16(handle()); benchmarker_int4_4x4x16.set_times(RUNS) .set_dtype(0, dtype::QuantizedS4{0.3}) .set_dtype(1, dtype::QuantizedS4{0.3}) .set_dtype(2, dtype::QuantizedS16{0.09}) .set_param(param) .set_display(false); benchmarker.set_times(RUNS) .set_dtype(0, dtype::Int8{}) .set_dtype(1, dtype::Int8{}) .set_dtype(2, dtype::Int16{}) .set_param(param) .set_display(false); benchmarker.set_before_exec_callback( AlgoChecker("AARCH64_INT8X8X16_K4X4X16")); auto run = [&](size_t M, size_t N, size_t K) { auto default_used = benchmarker.exec({{M, K}, {K, N}, {}}) / RUNS; auto int4416_used = benchmarker_int4_4x4x16.exec({{M, K}, {K, N}, {}}) / RUNS; float computations = 2.f * M * K * N * 1e-6; printf("run: {%zu{M} %zu{K} %zu{N}} normal 8x8x16 used: %f ms %f " "Gflops int4416 used %f int4416_gflops %f speedup %f\n", M, K, N, default_used, computations / default_used, int4416_used, computations / int4416_used, default_used / int4416_used); }; for (int m = 32; m <= 1024; m += 32) for (int n = 32; n <= 1024; n += 32) for (int k = 32; k <= 512; k += 32) run(m, n, k); run(32, 32, 32); run(32, 32, 8); run(32, 32, 16); run(32, 32, 24); run(32 * 2, 32 * 2, 32); run(32 * 4, 32 * 4, 32); run(32 * 6, 32 * 6, 32); run(32 * 8, 32 * 8, 32); run(32 * 2, 32 * 2, 32 * 2); run(32 * 4, 32 * 4, 32 * 3); run(32 * 6, 32 * 6, 32 * 4); run(32 * 8, 32 * 8, 32 * 5); run(32 * 10, 32 * 10, 32 * 10); run(384, 384, 384); run(256, 256, 384); run(512, 512, 384); run(1024, 1024, 384); } TEST_F(AARCH64, BENCHMARK_MATRIX_MUL_MK4_8x8x8_8x8x16_vs_4x4x16_8x8x16) { constexpr size_t RUNS = 50; param::MatrixMul param; param.transposeA = false; param.transposeB = false; Benchmarker benchmarker(handle()); Benchmarker benchmarker_mk4(handle()); Benchmarker benchmarker_mk4_4x4x8(handle()); benchmarker.set_times(RUNS) .set_dtype(0, dtype::Int8{}) .set_dtype(1, dtype::Int8{}) .set_dtype(2, dtype::Int16{}) .set_param(param) .set_display(false); benchmarker.set_before_exec_callback( AlgoChecker("AARCH64_INT8X8X16_K4X4X16")); param.format = MatrixMul::Param::Format::MK4; benchmarker_mk4.set_before_exec_callback( AlgoChecker("AARCH64_INT8X8X16_MK4_K8X8X8")); benchmarker_mk4.set_times(RUNS) .set_dtype(0, dtype::Int8{}) .set_dtype(1, dtype::Int8{}) .set_dtype(2, dtype::Int16{}) .set_param(param) .set_display(false); benchmarker_mk4_4x4x8.set_before_exec_callback( AlgoChecker("AARCH64_INT8X8X16_MK4_4X4X8")); benchmarker_mk4_4x4x8.set_times(RUNS) .set_dtype(0, dtype::Int8{}) .set_dtype(1, dtype::Int8{}) .set_dtype(2, dtype::Int16{}) .set_param(param) .set_display(false); auto run = [&](size_t M, size_t N, size_t K) { auto default_used = benchmarker.exec({{M, K}, {K, N}, {}}) / RUNS; auto mk_used = benchmarker_mk4.exec({{M / 4, K / 4, 4, 4}, {K / 4, N, 4}, {}}) / RUNS; auto mk4_4x4x8_used = benchmarker_mk4_4x4x8.exec({{M / 4, K / 4, 4, 4}, {K / 4, N, 4}, {}}) / RUNS; float computations = 2.f * M * K * N * 1e-6; printf("run: {%zu{M} %zu{K} %zu{N}} normal: %f ms %f Gflops mk4: %f ms " "%f Gflops speedup: %f, mk4_4x4x8 %f Gflops %f ms speedup: %f\n", M, K, N, default_used, computations / default_used, mk_used, computations / mk_used, default_used / mk_used, computations / mk4_4x4x8_used, mk4_4x4x8_used, mk4_4x4x8_used / mk_used); }; run(384, 384, 384); run(512, 512, 512); run(1024, 1024, 384); run(256, 256, 384); for (int m = 32; m <= 512; m *= 2) for (int n = 32; n <= 512; n *= 2) for (int k = 32; k < 512; k *= 2) { run(m, n, k); } } TEST_F(AARCH64, BENCHMARK_MATRIX_MUL_INT16_4X4X16) { constexpr size_t RUNS = 50; param::MatrixMul param; param.transposeA = false; param.transposeB = false; Benchmarker benchmarker_int(handle()); Benchmarker benchmarker_int32(handle()); benchmarker_int.set_times(RUNS) .set_dtype(0, dtype::Int8{}) .set_dtype(1, dtype::Int8{}) .set_dtype(2, dtype::Int16{}) .set_param(param) .set_display(false); benchmarker_int.set_before_exec_callback( AlgoChecker("AARCH64_INT8X8X16_K4X4X16")); benchmarker_int32.set_before_exec_callback( AlgoChecker("AARCH64_INT8X8X32_K4X4X16")); benchmarker_int32.set_times(RUNS) .set_dtype(0, dtype::Int8{}) .set_dtype(1, dtype::Int8{}) .set_dtype(2, dtype::Int32{}) .set_param(param) .set_display(false); Benchmarker benchmarker_float(handle()); benchmarker_float.set_param(param).set_display(false).set_times(RUNS); auto run = [&](size_t M, size_t N, size_t K) { TensorShape A, B; if (param.transposeA) { A = TensorShape{K, M}; } else { A = TensorShape{M, K}; } if (param.transposeB) { B = TensorShape{N, K}; } else { B = TensorShape{K, N}; } auto int_used = benchmarker_int.exec({A, B, {}}) / RUNS; auto float_used = benchmarker_float.exec({A, B, {}}) / RUNS; auto int32_used = benchmarker_int32.exec({A, B, {}}) / RUNS; float computations = 2.f * M * K * N * 1e-6; printf("run: {%zu{M} %zu{K} %zu{N}} float: %f ms %f Gflops int: %f ms " "%f Gflops speedup_vs_fp32: %f, speedup_vs_int32: %f\n", M, K, N, float_used, computations / float_used, int_used, computations / int_used, float_used / int_used, int32_used / int_used); }; run(256, 256, 128); run(256, 256, 256); for (size_t k = 4; k <= 256; k *= 4) { for (size_t m = 4; m <= 256; m *= 4) { for (size_t n = 4; n <= 256; n *= 4) { run(m, n, k); } } std::cout << std::endl; } } TEST_F(AARCH64, BENCHMARK_GEMV) { int exec_times = 10; Benchmarker benchmarker_gemm(handle()); benchmarker_gemm.set_times(exec_times); float mod = 1000 * exec_times / 1e9; auto run = [&](size_t M, size_t K, size_t N) { float time = 1.f, perf = 1.f; std::cout << "GEMM: (" << M << ", " << K << ", " << N << ")" << std::endl; benchmarker_gemm.set_dtype(0, dtype::Float32()).set_dtype(1, dtype::Float32()); time = benchmarker_gemm.exec({{M, K}, {K, N}, {}}); perf = 2.f * M * K * N / time * mod; std::cout << "gemm fp32, Performance is " << perf << " Gflops" << std::endl; #if __ARM_FEATURE_FP16_VECTOR_ARITHMETIC benchmarker_gemm.set_dtype(0, dtype::Float16()).set_dtype(1, dtype::Float16()); time = benchmarker_gemm.exec({{M, K}, {K, N}, {}}); perf = 2.f * M * K * N / time * mod; std::cout << "gemm fp16, Performance is " << perf << " Gflops" << std::endl; #endif }; std::cout << "warm up:\n"; for (int i = 0; i < 50; i++) { benchmarker_gemm.set_dtype(0, dtype::Float32()) .set_dtype(1, dtype::Float32()) .set_display(false) .exec({{256, 256}, {256, 256}, {}}); benchmarker_gemm.set_display(true); } // run gemv for (size_t M : {1, 2, 3, 4, 5, 6, 7, 8, 64, 256}) for (size_t K : {1, 2, 3, 4, 5, 6, 7, 8, 64, 256}) for (size_t N : {112}) run(M, K, N); } #if MGB_ENABLE_DOT TEST_F(AARCH64, BENCHMARK_TRANSPOSED_MATRIX_MUL_INT_8X8X32) { constexpr size_t RUNS = 50; param::MatrixMul param; param.transposeA = param.transposeB = true; Benchmarker benchmarker_int(handle()); benchmarker_int.set_times(RUNS) .set_dtype(0, dtype::Int8{}) .set_dtype(1, dtype::Int8{}) .set_dtype(2, {}) .set_param(param) .set_display(false); Benchmarker benchmarker_float(handle()); benchmarker_float.set_param(param).set_display(false).set_times(RUNS); auto run = [&](size_t M, size_t N, size_t K) { auto int_used = benchmarker_int.exec({{K, M}, {N, K}, {}}) / RUNS; auto float_used = benchmarker_float.exec({{K, M}, {N, K}, {}}) / RUNS; float computations = 2.f * M * K * N * 1e-6; printf("run: {%zu{M} %zu{K} %zu{N}} float: %f ms %f Gflops int: %f ms " "%f Gflops speedup: %f\n", M, K, N, float_used, computations / float_used, int_used, computations / int_used, float_used / int_used); }; run(256, 12 * 24, 256); for (size_t M : {8, 64, 112, 256}) { for (size_t K : {8, 64, 112, 256}) { for (size_t N : {8, 64, 112, 256}) { run(M, N, K); } } } } TEST_F(AARCH64, BENCHMARK_GEMV_INT_8X8X32) { constexpr size_t RUNS = 50; param::MatrixMul param; Benchmarker benchmarker_int(handle()); benchmarker_int.set_times(RUNS) .set_dtype(0, dtype::Int8{}) .set_dtype(1, dtype::Int8{}) .set_dtype(2, {}) .set_param(param) .set_display(false); Benchmarker benchmarker_float(handle()); benchmarker_float.set_display(false).set_times(RUNS); auto run = [&](size_t M, size_t N, size_t K) { auto int_used = benchmarker_int.exec({{M, K}, {K, N}, {}}) / RUNS; auto float_used = benchmarker_float.exec({{M, K}, {K, N}, {}}) / RUNS; float computations = 2.f * M * K * N * 1e-6; printf("run: {%zu{M} %zu{K} %zu{N}} float: %f ms %f Gflops int: %f ms " "%f Gflops speedup: %f\n", M, K, N, float_used, computations / float_used, int_used, computations / int_used, float_used / int_used); }; for (size_t M : {1, 2, 3, 4, 5, 6, 7, 8, 16, 32, 64, 256}) for (size_t N : {1, 2, 3, 4, 5, 6, 7, 8, 16, 32, 64, 256}) for (size_t K : {1, 2, 3, 4, 5, 6, 7, 8, 16, 32, 64, 256}) run(M, N, K); } TEST_F(AARCH64, BENCHMARK_MATRIX_MUL_INT8X8X32_MK4_8X12X4) { constexpr size_t RUNS = 50; param::MatrixMul param; param.transposeA = false; param.transposeB = false; Benchmarker benchmarker(handle()); Benchmarker benchmarker_mk4(handle()); benchmarker.set_times(RUNS) .set_dtype(0, dtype::Int8{}) .set_dtype(1, dtype::Int8{}) .set_dtype(2, dtype::Int32{}) .set_param(param) .set_display(false); benchmarker.set_before_exec_callback( AlgoChecker("AARCH64_INT8X8X32_K8X12X4")); param.format = MatrixMul::Param::Format::MK4_DOT; benchmarker_mk4.set_before_exec_callback( AlgoChecker("AARCH64_INT8X8X32_MK4_8X12X4_DOTPROD")); benchmarker_mk4.set_times(RUNS) .set_dtype(0, dtype::Int8{}) .set_dtype(1, dtype::Int8{}) .set_dtype(2, dtype::Int32{}) .set_param(param) .set_display(false); auto run = [&](size_t M, size_t N, size_t K) { auto default_used = benchmarker.exec({{M, K}, {K, N}, {}}) / RUNS; auto mk_used = benchmarker_mk4.exec({{M / 4, K / 4, 4, 4}, {K / 4, N, 4}, {}}) / RUNS; float computations = 2.f * M * K * N * 1e-6; printf("run: {%zu{M} %zu{K} %zu{N}} normal: %f ms %f Gflops mk4: %f ms " "%f Gflops speedup_vs_normal: %f\n", M, K, N, default_used, computations / default_used, mk_used, computations / mk_used, default_used / mk_used); }; run(256, 256, 128); for (size_t k = 4; k <= 512; k *= 2) { for (size_t m = 4; m <= 512; m *= 2) { for (size_t n = 4; n <= 512; n *= 2) { run(m, n, k); } } std::cout << std::endl; } } #endif // MGB_ENABLE_DOT #if __ARM_FEATURE_FP16_VECTOR_ARITHMETIC TEST_F(AARCH64, BENCHMARK_MATRIX_MUL_F16_MK8) { auto args = matrix_mul::get_benchmark_matmul_mk_packed_args(8); matrix_mul::benchmark_with_contrast( handle(), args, dtype::Float16{}, dtype::Float16{}, dtype::Float16{}, "AARCH64_F16_MK8_8X8", param::MatrixMul::Format::MK8, dtype::Float16{}, dtype::Float16{}, dtype::Float16{}, "AARCH64_F16_K8X24X1"); } #endif TEST_F(AARCH64, BENCHMARK_MATRIX_MUL_INT16x16x32) { constexpr size_t RUNS = 50; Benchmarker benchmarker_int(handle()); benchmarker_int.set_times(RUNS) .set_dtype(0, dtype::Int16{}) .set_dtype(1, dtype::Int16{}) .set_dtype(2, dtype::Int32{}) .set_display(false); Benchmarker benchmarker_float(handle()); benchmarker_float.set_display(false).set_times(RUNS); auto run = [&](size_t M, size_t N, size_t K, int mask) { param::MatrixMul param; param.transposeA = mask & 0x1; param.transposeB = mask & 0x2; benchmarker_int.set_param(param); benchmarker_float.set_param(param); TensorShape A, B; if (param.transposeA) { A = TensorShape{K, M}; } else { A = TensorShape{M, K}; } if (param.transposeB) { B = TensorShape{N, K}; } else { B = TensorShape{K, N}; } auto int_used = benchmarker_int.exec({A, B, {}}) / RUNS; auto float_used = benchmarker_float.exec({A, B, {}}) / RUNS; float computations = 2.f * M * K * N * 1e-6; printf("run: {%zu{M} %zu{K} %zu{N} %d{TA} %d{TB}} " "float: %f ms %f Gflops int: %f ms " "%f Gflops speedup: %f\n", M, K, N, param.transposeA, param.transposeB, float_used, computations / float_used, int_used, computations / int_used, float_used / int_used); }; constexpr int mask = 4; for (auto i = 0; i < mask; i++) { for (size_t M : {8, 64, 112, 256}) { for (size_t K : {8, 64, 112, 256}) { for (size_t N : {8, 64, 112, 256}) { run(M, N, K, i); } } } } } TEST_F(AARCH64, BENCHMARK_MATRIX_MUL_FP32_MK4) { auto args = matrix_mul::get_benchmark_matmul_mk_packed_args(16); matrix_mul::benchmark_with_contrast( handle(), args, dtype::Float32{}, dtype::Float32{}, dtype::Float32{}, "AARCH64_F32_MK4_4x16", param::MatrixMul::Format::MK4, dtype::Float32{}, dtype::Float32{}, dtype::Float32{}); } TEST_F(AARCH64, BENCHMARK_MATRIX_MUL_FP32_PACK_MK4) { auto args = matrix_mul::get_benchmark_matmul_mk_packed_args(16); matrix_mul::benchmark_with_contrast( handle(), args, dtype::Float32{}, dtype::Float32{}, dtype::Float32{}, "AARCH64_F32_MK4_K8X12X1", param::MatrixMul::Format::MK4, dtype::Float32{}, dtype::Float32{}, dtype::Float32{}, "AARCH64_F32K8X12X1"); } TEST_F(AARCH64, BENCHMARK_MATRIX_MUL_INT16x16x32_MK8) { auto args = matrix_mul::get_benchmark_matmul_mk_packed_args(8); matrix_mul::benchmark_with_contrast( handle(), args, dtype::Int16{}, dtype::Int16{}, dtype::Int32{}, "AARCH64_INT16X16X32_MK8_8X8", param::MatrixMul::Format::MK8, dtype::Int16{}, dtype::Int16{}, dtype::Int32{}); } TEST_F(AARCH64, BENCHMARK_MATRIX_MUL_FP32_K8X12) { constexpr size_t RUNS = 50; param::MatrixMul param; param.transposeA = param.transposeB = true; Benchmarker benchmarker_k12x8(handle()); Benchmarker benchmarker_k8x12(handle()); benchmarker_k12x8.set_param(param).set_display(false).set_times(RUNS); benchmarker_k8x12.set_param(param).set_display(false).set_times(RUNS); benchmarker_k12x8.set_before_exec_callback( AlgoChecker("AARCH64_F32K4X16X1")); benchmarker_k8x12.set_before_exec_callback( AlgoChecker("AARCH64_F32K8X12X1")); auto run = [&](size_t M, size_t N, size_t K) { auto k12x8_used = benchmarker_k12x8.exec({{K, M}, {N, K}, {}}) / RUNS; auto k8x12_used = benchmarker_k8x12.exec({{K, M}, {N, K}, {}}) / RUNS; float computations = 2.f * M * K * N * 1e-6; printf("run: {%zu{M} %zu{K} %zu{N}} float k12x8: %f ms %f Gflops " "k8x12: %f ms " "%f Gflops speedup: %f\n", M, K, N, k12x8_used, computations / k12x8_used, k8x12_used, computations / k8x12_used, k12x8_used / k8x12_used); }; run(256, 12 * 24, 256); for (size_t M : {8, 64, 112, 256}) { for (size_t K : {8, 64, 112, 256}) { for (size_t N : {8, 64, 112, 256}) { run(M, N, K); } } } } TEST_F(AARCH64, BENCHMARK_MATRIX_MUL_FP32_K8X12_NO_TRANS) { constexpr size_t RUNS = 50; param::MatrixMul param; param.transposeA = param.transposeB = false; Benchmarker benchmarker_k12x8(handle()); Benchmarker benchmarker_k8x12(handle()); benchmarker_k12x8.set_param(param).set_display(false).set_times(RUNS); benchmarker_k8x12.set_param(param).set_display(false).set_times(RUNS); benchmarker_k12x8.set_before_exec_callback( AlgoChecker("AARCH64_F32K4X16X1")); benchmarker_k8x12.set_before_exec_callback( AlgoChecker("AARCH64_F32K8X12X1")); auto run = [&](size_t M, size_t N, size_t K) { auto k12x8_used = benchmarker_k12x8.exec({{M, K}, {K, N}, {}}) / RUNS; auto k8x12_used = benchmarker_k8x12.exec({{M, K}, {K, N}, {}}) / RUNS; float computations = 2.f * M * K * N * 1e-6; printf("run: {%zu{M} %zu{K} %zu{N}} float k12x8: %f ms %f Gflops " "k8x12: %f ms " "%f Gflops speedup: %f\n", M, K, N, k12x8_used, computations / k12x8_used, k8x12_used, computations / k8x12_used, k12x8_used / k8x12_used); }; run(256, 12 * 24, 256); for (size_t M : {8, 64, 112, 256}) { for (size_t K : {8, 64, 112, 256}) { for (size_t N : {8, 64, 112, 256}) { run(M, N, K); } } } } #endif // MEGDNN_WITH_BENCHMARK // vim: syntax=cpp.doxygen