/** * \file dnn/test/arm_common/conv_bias.cpp * MegEngine is Licensed under the Apache License, Version 2.0 (the "License") * * Copyright (c) 2014-2021 Megvii Inc. All rights reserved. * * Unless required by applicable law or agreed to in writing, * software distributed under the License is distributed on an * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or * implied. */ #include "megdnn/dtype.h" #include "test/arm_common/fixture.h" #include "megdnn/opr_param_defs.h" #include "megdnn/oprs.h" #include "src/fallback/conv_bias/common.h" #include "test/common/benchmarker.h" #include "test/common/checker.h" #include "test/common/conv_bias.h" #include "test/common/rng.h" #include "test/common/task_record_check.h" #include "test/common/tensor.h" #include "test/common/workspace_wrapper.h" using namespace megdnn; using namespace test; using namespace conv_bias; //! TODO this algo current does not support multithread TEST_F(ARM_COMMON, CONVBIAS_INT8_INT8_INT16_STRIDE2F2) { checker_conv_bias_int8x8x16( get_conv_bias_args({2}, 2, true, true, true), handle(), "I8816STRD2F2"); } TEST_F(ARM_COMMON, CONV_BIAS_MATMUL) { using namespace conv_bias; std::vector args = get_quantized_args(); Checker checker(handle()); checker.set_before_exec_callback( conv_bias::ConvBiasAlgoChecker("S8MATMUL")); #if MEGDNN_ARMV7 checker.set_epsilon(1); #endif UniformIntRNG rng{-50, 50}; for (auto&& arg : args) { if (arg.bias.ndim == 4 && arg.bias[2] != 1 && arg.bias[3] != 1) continue; checker.set_dtype(0, dtype::QuantizedS8(0.41113496f)) .set_dtype(1, dtype::QuantizedS8(0.01887994f)) .set_dtype(2, dtype::QuantizedS32(0.41113496f * 0.01887994f)) .set_dtype(4, dtype::QuantizedS8(0.49550694f)) .set_rng(0, &rng) .set_rng(1, &rng) .set_rng(2, &rng) .set_param(arg.param) .execs({arg.src, arg.filter, arg.bias, {}, {}}); } } TEST_F(ARM_COMMON, CONV_BIAS_RECORD) { using namespace conv_bias; std::vector args = get_quantized_args(); TaskRecordChecker checker(0); #if MEGDNN_ARMV7 checker.set_epsilon(1); #endif UniformIntRNG rng{-50, 50}; for (auto&& arg : args) { if (arg.bias.ndim == 4 && arg.bias[2] != 1 && arg.bias[3] != 1) continue; checker.set_dtype(0, dtype::QuantizedS8(0.41113496f)) .set_dtype(1, dtype::QuantizedS8(0.01887994f)) .set_dtype(2, dtype::QuantizedS32(0.41113496f * 0.01887994f)) .set_dtype(4, dtype::QuantizedS8(0.49550694f)) .set_rng(0, &rng) .set_rng(1, &rng) .set_rng(2, &rng) .set_param(arg.param) .execs({arg.src, arg.filter, arg.bias, {}, {}}); } } TEST_F(ARM_COMMON, CONV_BIAS_WINOGRAD_F63_4) { using namespace conv_bias; std::vector args = get_winograd_mk_packed_args(); Checker checker(handle()); check_winograd("4:6:16", checker, args, param::MatrixMul::Format::MK4); } TEST_F(ARM_COMMON, CONV_BIAS_WINOGRAD_F63_4_WEIGHT_PREPROCESS) { using namespace conv_bias; std::vector args = get_winograd_mk_packed_args(); Checker> checker( handle()); check_winograd("4:6:16", checker, args, param::MatrixMul::Format::MK4); } #define CONV_BIAS_MATMUL_QU8_MODE(MODE) \ using namespace conv_bias; \ std::vector args = get_quantized_args_with_nlmode(MODE); \ Checker checker(handle()); \ checker.set_before_exec_callback( \ conv_bias::ConvBiasAlgoChecker("QU8MATMUL")); \ UniformIntRNG rng{0, 127}; \ for (auto&& arg : args) { \ if (arg.bias.ndim == 4 && arg.bias[2] != 1 && arg.bias[3] != 1) \ continue; \ checker.set_dtype(0, dtype::Quantized8Asymm(2.5f, static_cast(127))) \ .set_dtype(1, dtype::Quantized8Asymm(2.7f, static_cast(126))) \ .set_dtype(2, dtype::QuantizedS32(6.75f)) \ .set_dtype( \ 4, dtype::Quantized8Asymm(60.25f, static_cast(125))) \ .set_rng(0, &rng) \ .set_rng(1, &rng) \ .set_rng(2, &rng) \ .set_param(arg.param) \ .execs({arg.src, arg.filter, arg.bias, {}, {}}); \ } #define MODE_STR(mode) param::ConvBias::NonlineMode::mode #define CB_TEST(MODE) \ TEST_F(ARM_COMMON, CONV_BIAS_MATMUL_QU8_##MODE) { \ CONV_BIAS_MATMUL_QU8_MODE(MODE_STR(MODE)); \ } CB_TEST(IDENTITY); CB_TEST(RELU); CB_TEST(H_SWISH); #undef MODE_STR #undef CB_TEST #undef CONV_BIAS_MATMUL_QU8_MODE #if MEGDNN_WITH_BENCHMARK static void benchmark_convbias( Handle* handle, std::string int_name, std::string float_name, bool is_fp32 = false, bool is_8x8x16 = false) { constexpr size_t RUNS = 30; Benchmarker benchmarker_int(handle); benchmarker_int.set_times(RUNS) .set_dtype(0, dtype::QuantizedS8(2.5)) .set_dtype(1, dtype::QuantizedS8(2.5)) .set_dtype(2, dtype::QuantizedS32(6.25)) .set_dtype(4, dtype::QuantizedS8(60.25)) .set_display(false); benchmarker_int.set_before_exec_callback( conv_bias::ConvBiasAlgoChecker(int_name.c_str())); Benchmarker benchmarker_float(handle); benchmarker_float.set_display(false).set_times(RUNS); benchmarker_float.set_before_exec_callback( conv_bias::ConvBiasAlgoChecker(float_name.c_str())); Benchmarker benchmarker_nchw44(handle); if (is_fp32) { benchmarker_nchw44.set_times(RUNS) .set_dtype(0, dtype::Float32()) .set_dtype(1, dtype::Float32()) .set_dtype(2, dtype::Float32()) .set_dtype(4, dtype::Float32()) .set_display(false); } else if (is_8x8x16) { benchmarker_nchw44.set_times(RUNS) .set_dtype(0, dtype::Int8()) .set_dtype(1, dtype::Int8()) .set_dtype(2, dtype::Int16()) .set_dtype(4, dtype::Int16()) .set_display(false); benchmarker_int.set_times(RUNS) .set_dtype(0, dtype::Int8()) .set_dtype(1, dtype::Int8()) .set_dtype(2, dtype::Int16()) .set_dtype(4, dtype::Int16()) .set_display(false); } else { benchmarker_nchw44.set_times(RUNS) .set_dtype(0, dtype::QuantizedS8(2.5)) .set_dtype(1, dtype::QuantizedS8(2.5)) .set_dtype(2, dtype::QuantizedS32(6.25)) .set_dtype(4, dtype::QuantizedS8(60.25)) .set_display(false); } auto nchw44_algo_regx = ".*(DIRECT|NCHW_NCHW44).*"; #if MGB_ENBALE_DOT if (!is_fp32) { nchw44_algo_regx = ".*DOT.*"; } #endif benchmarker_nchw44.set_before_exec_callback( conv_bias::ConvBiasAlgoChecker(nchw44_algo_regx)); auto run = [&](size_t N, size_t IC, size_t OC, size_t H, size_t W, size_t FS, size_t stride, bool input_nchw = false) { param::ConvBias param; param.nonlineMode = param::ConvBias::NonlineMode::RELU; if (is_8x8x16) { param.nonlineMode = param::ConvBias::NonlineMode::IDENTITY; } param.stride_h = stride; param.stride_w = stride; param.pad_h = FS / 2; param.pad_w = FS / 2; auto OH = (H + 2 * param.pad_h - FS) / static_cast(param.stride_h) + 1; auto OW = (W + 2 * param.pad_w - FS) / static_cast(param.stride_w) + 1; TensorShape src({N, IC, H, W}), filter({OC, IC, FS, FS}), bias({1, OC, 1, 1}), dst({N, OC, OH, OW}); if (is_8x8x16) { bias = {}; } param.format = param::ConvBias::Format::NCHW; auto int_used = benchmarker_int.set_param(param).exec({src, filter, bias, {}, dst}) / RUNS; auto float_used = benchmarker_float.set_param(param).exec({src, filter, bias, {}, dst}) / RUNS; param.format = param::ConvBias::Format::NCHW44; src = {N, IC / 4, H, W, 4}; filter = {OC / 4, IC / 4, FS, FS, 4, 4}; if (input_nchw) { src = {N, IC, H, W}; filter = {OC / 4, FS, FS, IC, 4}; } bias = {1, OC / 4, 1, 1, 4}; if (is_8x8x16) { bias = {}; } dst = {N, OC / 4, OH, OW, 4}; auto int_nchw44_used = benchmarker_nchw44.set_param(param).exec({src, filter, bias, {}, dst}) / RUNS; float computations = IC * (FS * FS) * dst.total_nr_elems() * 2 * 1e-6; printf("run: %s %s %s->%s \n", src.to_string().c_str(), filter.to_string().c_str(), bias.to_string().c_str(), dst.to_string().c_str()); printf("float: %f ms %f Gflops, ", float_used, computations / float_used); printf("int_nchw: %f ms %f Gflops, ", int_used, computations / int_used); auto speed_up = int_used / int_nchw44_used; if (is_fp32) { speed_up = float_used / int_nchw44_used; printf("fp32_nchw44: %f ms %f Gflops %f speedup, ", int_nchw44_used, computations / int_nchw44_used, speed_up); } else { printf("int_nchw44: %f ms %f Gflops %f speedup, ", int_nchw44_used, computations / int_nchw44_used, speed_up); } printf("\n"); }; if (is_fp32) { run(1, 1, 4, 112, 112, 2, 2, true); run(1, 3, 24, 224, 224, 3, 2, true); run(1, 3, 32, 224, 224, 3, 2, true); run(1, 3, 64, 224, 224, 7, 2, true); run(1, 1, 4, 112, 112, 2, 1, true); run(1, 3, 32, 224, 224, 3, 1, true); run(1, 3, 64, 224, 224, 3, 1, true); run(1, 3, 64, 224, 224, 7, 1, true); run(1, 64, 128, 56, 56, 3, 2, false); run(1, 128, 256, 28, 28, 3, 2, false); run(1, 256, 512, 14, 14, 3, 2, false); run(1, 128, 128, 28, 28, 3, 1, false); run(1, 256, 256, 14, 14, 3, 1, false); run(1, 512, 512, 7, 7, 3, 1, false); } else { run(1, 1, 4, 112, 112, 2, 2, true); run(1, 3, 8, 224, 224, 3, 2, true); run(1, 3, 32, 224, 224, 3, 2, true); run(1, 3, 32, 224, 224, 5, 2, true); run(1, 3, 64, 224, 224, 7, 2, true); run(1, 1, 4, 112, 112, 2, 1, true); run(1, 3, 32, 224, 224, 3, 1, true); run(1, 3, 32, 224, 224, 5, 1, true); run(1, 3, 64, 224, 224, 7, 1, true); run(1, 64, 128, 56, 56, 3, 2, false); run(1, 128, 256, 28, 28, 3, 2, false); run(1, 256, 512, 14, 14, 3, 2, false); run(1, 128, 128, 28, 28, 3, 1, false); run(1, 256, 256, 14, 14, 3, 1, false); run(1, 512, 512, 7, 7, 3, 1, false); for (size_t stride : {1}) { printf("stride %zu\n", stride); for (size_t filter_size : {2, 3, 5, 7}) { for (size_t img_size : {32}) { for (size_t channel : {8, 16, 32, 64, 128, 256}) { run(1, channel, channel, img_size, img_size, filter_size, stride, false); } } } } } } TEST_F(ARM_COMMON, BENCHMARK_CONVBIAS_NCHW44) { #if MEGDNN_AARCH64 benchmark_convbias( handle(), "IM2COLMATMUL:AARCH64_INT8X8X32_K4X4X16:384", "IM2COLMATMUL:AARCH64_F32K8X12X1:192", true); benchmark_convbias( handle(), "IM2COLMATMUL:AARCH64_INT8X8X32_K4X4X16:384", "IM2COLMATMUL:AARCH64_F32K8X12X1:192", false); benchmark_convbias( handle(), "IM2COLMATMUL:AARCH64_INT8X8X16_K4X4X16:192", "IM2COLMATMUL:AARCH64_F32K8X12X1:192", false, true); #else benchmark_convbias( handle(), "IM2COLMATMUL:ARMV7_INT8X8X32_K4X8X8:384", "IM2COLMATMUL:ARMV7_F32:192", true); benchmark_convbias( handle(), "IM2COLMATMUL:ARMV7_INT8X8X32_K4X8X8:384", "IM2COLMATMUL:ARMV7_F32:192", false); benchmark_convbias( handle(), "IM2COLMATMUL:ARMV7_INT8X8X16_K4X8X8:384", "IM2COLMATMUL:ARMV7_F32:192", false, true); #endif } TEST_F(ARM_COMMON_MULTI_THREADS, BENCHMARK_CONVBIAS_NCHW44) { #if MEGDNN_AARCH64 benchmark_convbias( handle(), "IM2COLMATMUL:AARCH64_INT8X8X32_K4X4X16:384", "IM2COLMATMUL:AARCH64_F32K8X12X1:192", true); benchmark_convbias( handle(), "IM2COLMATMUL:AARCH64_INT8X8X32_K4X4X16:384", "IM2COLMATMUL:AARCH64_F32K8X12X1:192", false); #else benchmark_convbias( handle(), "IM2COLMATMUL:ARMV7_INT8X8X32_K4X8X8:384", "IM2COLMATMUL:ARMV7_F32:192", true); benchmark_convbias( handle(), "IM2COLMATMUL:AARCH64_INT8X8X32_K4X4X16:384", "IM2COLMATMUL:ARMV7_F32:192", false); #endif } #endif TEST_F(ARM_COMMON, CONV_BIAS_MATMUL_QS8) { using namespace conv_bias; std::vector args = get_quantized_args(); Checker checker(handle()); checker.set_before_exec_callback( conv_bias::ConvBiasAlgoChecker("S8MATMUL")); #if MEGDNN_ARMV7 checker.set_epsilon(1); #endif UniformIntRNG rng{0, 255}; for (auto&& arg : args) { if (arg.bias.ndim == 4 && arg.bias[2] != 1 && arg.bias[3] != 1) continue; checker.set_dtype(0, dtype::QuantizedS8(2.5f)) .set_dtype(1, dtype::QuantizedS8(2.7f)) .set_dtype(2, dtype::QuantizedS32(6.75f)) .set_dtype(4, dtype::QuantizedS8(60.25f)) .set_rng(0, &rng) .set_rng(1, &rng) .set_rng(2, &rng) .set_param(arg.param) .execs({arg.src, arg.filter, arg.bias, {}, {}}); } } #if MEGDNN_ARMV7 TEST_F(ARM_COMMON, CONV_BIAS_RESCALE_OP) { using namespace conv_bias; Checker checker(handle()); checker.set_before_exec_callback( conv_bias::ConvBiasAlgoChecker("S8MATMUL")); checker.set_epsilon(1).set_max_avg_error(1e-2).set_max_avg_biased_error(1e-3); UniformIntRNG rng{-128, 127}; checker.set_dtype(0, dtype::QuantizedS8(0.41113496f)) .set_dtype(1, dtype::QuantizedS8(0.01887994f)) .set_dtype(2, dtype::QuantizedS32(0.41113496f * 0.01887994f)) .set_dtype(4, dtype::QuantizedS8(0.49550694f)) .set_rng(0, &rng) .set_rng(1, &rng) .set_rng(2, &rng); param::ConvBias param; param.stride_h = 1; param.stride_w = 1; param.pad_h = 0; param.pad_w = 0; param.nonlineMode = NonlineMode::IDENTITY; //! Unary op checker.set_param(param).exec( {TensorShape{2, 1, 128, 128}, TensorShape{16, 1, 2, 2}, TensorShape{}, TensorShape{}, {}}); //! Binary op checker.set_param(param).exec( {TensorShape{2, 1, 128, 128}, TensorShape{16, 1, 2, 2}, TensorShape{1, 16, 1, 1}, TensorShape{}, {}}); } #endif #if MEGDNN_WITH_BENCHMARK void benchmark_im2col( const char* algo_name, const char* im2col_name, Handle* handle, size_t kernel, size_t pack_size = 1) { auto&& args = get_winograd_benchmark_args(kernel, pack_size); using namespace conv_bias; constexpr size_t RUN = 10; Benchmarker benchmark(handle); benchmark.set_display(false); benchmark.set_times(RUN); Benchmarker benchmark_im2col(handle); benchmark_im2col.set_display(false); benchmark_im2col.set_times(RUN); for (auto&& arg : args) { TensorLayout dst_layout; auto opr = handle->create_operator(); opr->param() = arg.param; opr->deduce_layout( {arg.src, dtype::Float32()}, {arg.filter, dtype::Float32()}, {arg.bias, dtype::Float32()}, {}, dst_layout); //! dst.nr_elems * IC * FH * FW * 2 float computations = dst_layout.total_nr_elems() * arg.filter[1] * arg.filter[2] * arg.filter[3] * 2.0 / (1024 * 1024 * 1024) * 1e3; benchmark.set_param(arg.param); auto used = algo_benchmark( benchmark, {arg.src, arg.filter, {}, {}, {}}, algo_name) / RUN; benchmark_im2col.set_param(arg.param); auto used_im2col = algo_benchmark( benchmark_im2col, {arg.src, arg.filter, {}, {}, {}}, im2col_name) / RUN; printf("%s %s: normal: %f ms %f Gflops im2col: %f ms %f GFlops " "speedup: " "%f\n", arg.src.to_string().c_str(), arg.filter.to_string().c_str(), used, computations / used, used_im2col, computations / used_im2col, used / used_im2col); } } void benchmark_im2col_single_algo( const char* im2col_name, Handle* handle, size_t kernel, size_t pack_size = 1) { std::vector args; auto pack = [&](size_t oc, size_t ic, size_t w, size_t h, size_t kernel, size_t p) { if (ic % pack_size != 0 || oc % pack_size != 0) return; if (w + 2 * p < kernel || h + 2 * p < kernel) return; param::ConvBias param; param.stride_h = 1; param.stride_w = 1; param.pad_h = p; param.pad_w = p; args.push_back(conv_bias::TestArg{ param, TensorShape{1, ic, h, w}, TensorShape{oc, ic, kernel, kernel}, {1, oc, 1, 1}}); }; pack(1, 64, 100, 100, kernel, 1); pack(8, 64, 100, 100, kernel, 1); pack(16, 64, 100, 100, kernel, 1); pack(32, 64, 100, 100, kernel, 1); pack(64, 64, 100, 100, kernel, 1); pack(128, 64, 100, 100, kernel, 1); pack(256, 64, 100, 100, kernel, 1); pack(512, 64, 100, 100, kernel, 1); pack(1024, 64, 100, 100, kernel, 1); pack(1, 64, 10, 10, kernel, 1); pack(8, 64, 10, 10, kernel, 1); pack(16, 64, 10, 10, kernel, 1); pack(32, 64, 10, 10, kernel, 1); pack(64, 64, 10, 10, kernel, 1); pack(128, 64, 10, 10, kernel, 1); pack(256, 64, 10, 10, kernel, 1); pack(512, 64, 10, 10, kernel, 1); pack(1024, 64, 10, 10, kernel, 1); pack(1, 16, 10, 10, kernel, 1); pack(8, 16, 10, 10, kernel, 1); pack(16, 16, 10, 10, kernel, 1); pack(32, 16, 10, 10, kernel, 1); pack(64, 16, 10, 10, kernel, 1); pack(128, 16, 10, 10, kernel, 1); pack(256, 16, 10, 10, kernel, 1); pack(512, 16, 10, 10, kernel, 1); pack(1024, 16, 10, 10, kernel, 1); using namespace conv_bias; constexpr size_t RUN = 20; Benchmarker benchmark_im2col(handle); benchmark_im2col.set_display(false); benchmark_im2col.set_times(RUN); for (auto&& arg : args) { TensorLayout dst_layout; auto opr = handle->create_operator(); opr->param() = arg.param; opr->deduce_layout( {arg.src, dtype::Float32()}, {arg.filter, dtype::Float32()}, {arg.bias, dtype::Float32()}, {}, dst_layout); //! dst.nr_elems * IC * FH * FW * 2 float computations = dst_layout.total_nr_elems() * arg.filter[1] * arg.filter[2] * arg.filter[3] * 2.0 / (1024 * 1024 * 1024) * 1e3; benchmark_im2col.set_param(arg.param); auto used_im2col = algo_benchmark( benchmark_im2col, {arg.src, arg.filter, {}, {}, {}}, im2col_name) / RUN; printf("%s %s: im2col: %f ms %f GFlops \n", arg.src.to_string().c_str(), arg.filter.to_string().c_str(), used_im2col, computations / used_im2col); } } void benchmark_nchw44_8x8x16_vs_8x8x32( const char* im2col_name, Handle* handle, size_t kernel, size_t stride, size_t pack_size = 1) { megdnn_assert(stride == 1 || stride == 2, "only support stride 1 or 2"); std::vector args; auto pack = [&](size_t oc, size_t ic, size_t w, size_t h, size_t kernel, size_t p) { if (ic % pack_size != 0 || oc % pack_size != 0) return; if (w + 2 * p < kernel || h + 2 * p < kernel) return; param::ConvBias param; param.format = param::ConvBias::Format::NCHW44; param.stride_h = stride; param.stride_w = stride; param.pad_h = p; param.pad_w = p; param.sparse = param::ConvBias::Sparse::DENSE; args.push_back(conv_bias::TestArg{ param, TensorShape{1, ic / 4, h, w, 4}, TensorShape{oc / 4, ic / 4, kernel, kernel, 4, 4}, {1, oc / 4, 1, 1, 4}}); }; pack(1, 64, 56, 56, kernel, 0); pack(8, 64, 56, 56, kernel, 0); pack(16, 64, 56, 56, kernel, 1); pack(32, 64, 56, 56, kernel, 1); pack(1, 64, 100, 100, kernel, 1); pack(8, 64, 100, 100, kernel, 1); pack(1, 64, 100, 100, kernel, 0); pack(8, 64, 100, 100, kernel, 0); pack(16, 64, 100, 100, kernel, 1); pack(32, 64, 100, 100, kernel, 1); pack(64, 64, 100, 100, kernel, 1); pack(128, 64, 100, 100, kernel, 1); pack(256, 64, 100, 100, kernel, 1); pack(512, 64, 100, 100, kernel, 1); pack(1024, 64, 100, 100, kernel, 1); pack(1, 32, 200, 200, kernel, 1); pack(8, 64, 200, 200, kernel, 1); pack(1, 32, 200, 200, kernel, 0); pack(8, 64, 200, 200, kernel, 0); pack(16, 96, 200, 200, kernel, 1); pack(32, 32, 200, 200, kernel, 1); pack(64, 64, 200, 200, kernel, 1); pack(128, 96, 200, 200, kernel, 1); pack(1, 64, 10, 10, kernel, 1); pack(8, 64, 10, 10, kernel, 1); pack(16, 64, 10, 10, kernel, 1); pack(32, 64, 10, 10, kernel, 1); pack(64, 64, 10, 10, kernel, 1); pack(128, 64, 10, 10, kernel, 1); pack(256, 64, 10, 10, kernel, 1); pack(512, 64, 10, 10, kernel, 1); pack(1024, 64, 10, 10, kernel, 1); using namespace conv_bias; constexpr size_t RUN = 20; Benchmarker benchmark_im2col(handle); benchmark_im2col.set_display(false); benchmark_im2col.set_times(RUN); Benchmarker benchmark_8832(handle); benchmark_8832.set_display(false); benchmark_8832.set_times(RUN); for (auto&& arg : args) { TensorLayout dst_layout; auto opr = handle->create_operator(); opr->param() = arg.param; opr->deduce_layout( {arg.src, dtype::Float32()}, {arg.filter, dtype::Float32()}, {arg.bias, dtype::Float32()}, {}, dst_layout); //! dst.nr_elems * IC * FH * FW * 2 float computations = dst_layout.total_nr_elems() * arg.filter[1] * arg.filter[2] * arg.filter[3] * 2.0 * 4 / (1024 * 1024 * 1024) * 1e3; benchmark_im2col.set_param(arg.param); benchmark_im2col.set_dtype(0, dtype::Int8()); benchmark_im2col.set_dtype(1, dtype::Int8()); benchmark_im2col.set_dtype(2, dtype::Int16()); benchmark_im2col.set_dtype(4, dtype::Int16()); auto used_8816 = algo_benchmark( benchmark_im2col, {arg.src, arg.filter, {}, {}, {}}, im2col_name) / RUN; benchmark_8832.set_param(arg.param); benchmark_8832.set_dtype(0, dtype::QuantizedS8(2.5)); benchmark_8832.set_dtype(1, dtype::QuantizedS8(2.5)); benchmark_8832.set_dtype(2, dtype::QuantizedS32(6.25)); benchmark_8832.set_dtype(4, {}); auto used_8832 = algo_benchmark( benchmark_8832, {arg.src, arg.filter, {}, {}, {}}, "S8_NCHW44_DIRECT") / RUN; printf("%s %s: 8816: %f ms %f GFlops ", arg.src.to_string().c_str(), arg.filter.to_string().c_str(), used_8816, computations / used_8816); printf("%s %s: 8832: %f ms %f GFlops ", arg.src.to_string().c_str(), arg.filter.to_string().c_str(), used_8832, computations / used_8832); printf("speedup %f \n", used_8832 / used_8816); } } void BENCHMARK_IM2COL_NCHW44_VS_NCHW( const char* algo_name, const char* im2col_name, Handle* handle, size_t kernel, DType src_type, DType dst_type) { auto&& args = get_winograd_benchmark_args(kernel, 4); using namespace conv_bias; constexpr size_t RUN = 10; Benchmarker benchmark(handle); benchmark.set_display(false); benchmark.set_times(RUN); benchmark.set_dtype(0, src_type); benchmark.set_dtype(1, src_type); benchmark.set_dtype(2, dst_type); benchmark.set_dtype(4, dst_type); Benchmarker benchmark_im2col(handle); benchmark_im2col.set_display(false); benchmark_im2col.set_times(RUN); benchmark_im2col.set_dtype(0, src_type); benchmark_im2col.set_dtype(1, src_type); benchmark_im2col.set_dtype(2, dst_type); benchmark_im2col.set_dtype(4, dst_type); for (auto&& arg : args) { TensorLayout dst_layout; auto opr = handle->create_operator(); opr->param() = arg.param; opr->deduce_layout( {arg.src, dtype::Float32()}, {arg.filter, dtype::Float32()}, {arg.bias, dtype::Float32()}, {}, dst_layout); //! dst.nr_elems * IC * FH * FW * 2 float computations = dst_layout.total_nr_elems() * arg.filter[1] * arg.filter[2] * arg.filter[3] * 2.0 / (1024 * 1024 * 1024) * 1e3; std::vector nchw44param; benchmark.set_param(arg.param); auto used = algo_benchmark( benchmark, {arg.src, arg.filter, {}, {}, {}}, algo_name) / RUN; arg.param.nonlineMode = param::ConvBias::NonlineMode::IDENTITY; arg.param.format = param::ConvBias::Format::NCHW44; benchmark_im2col.set_param(arg.param); nchw44param.push_back(conv_bias::TestArg{ arg.param, TensorShape{ arg.src.shape[0], arg.src.shape[1] / 4, arg.src[2], arg.src.shape[3], 4}, TensorShape{ arg.filter.shape[0] / 4, arg.filter.shape[1] / 4, kernel, kernel, 4, 4}, TensorShape{}}); auto used_im2col = algo_benchmark( benchmark_im2col, {nchw44param[0].src, nchw44param[0].filter, {}, {}, {}}, im2col_name) / RUN; printf("nchw44 shape src %s filter %s\n", nchw44param[0].src.to_string().c_str(), nchw44param[0].filter.to_string().c_str()); printf("%s %s: normal: %f ms %f Gflops im2col: %f ms %f GFlops " "speedup: " "%f\n", arg.src.to_string().c_str(), arg.filter.to_string().c_str(), used, computations / used, used_im2col, computations / used_im2col, used / used_im2col); } } std::vector get_nchw44_channel_wise_benchmark_args( std::vector kernel, size_t stride, bool no_bias, bool no_nonlinemode, bool no_full_bias) { using namespace conv_bias; using Param = param::ConvBias; using NLMode = param::ConvBias::NonlineMode; std::vector args; auto pack = [&](size_t n, size_t group, size_t w, size_t h, size_t kernel, size_t stride, NLMode nlmode, bool pad) { Param param; param.stride_h = stride; param.stride_w = stride; if (pad) { param.pad_h = kernel / 2; param.pad_w = kernel / 2; } else { param.pad_h = 0; param.pad_w = 0; } param.nonlineMode = nlmode; param.format = param::ConvBias::Format::NCHW44; param.sparse = param::ConvBias::Sparse::GROUP; args.emplace_back( param, TensorShape{n, group, h, w, 4}, TensorShape{group, 1, 1, kernel, kernel, 4}, TensorShape{}); if (!no_bias) { args.emplace_back( param, TensorShape{n, group, h, w, 4}, TensorShape{group, 1, 1, kernel, kernel, 4}, TensorShape{1, group, 1, 1, 4}); } if (!no_full_bias) { args.emplace_back( param, TensorShape{n, group, h, w, 4}, TensorShape{group, 1, 1, kernel, kernel, 4}, TensorShape{ n, group, (h + 2 * param.pad_w - kernel) / stride + 1, (w + 2 * param.pad_w - kernel) / stride + 1, 4}); } }; std::vector nonlinemode = {NLMode::IDENTITY}; if (!no_nonlinemode) { nonlinemode.emplace_back(NLMode::RELU); nonlinemode.emplace_back(NLMode::H_SWISH); } for (size_t n : {1}) { for (auto nlmode : nonlinemode) { for (bool pad : {true}) { for (size_t group : {1, 2, 4, 128}) { for (size_t size : {40, 89, 100, 200}) { for (size_t kern : kernel) { pack(n, group, size, size, kern, stride, nlmode, pad); } } } } for (bool pad : {false}) { for (size_t group : {1, 2, 4, 8, 16, 32, 64, 128}) { for (size_t size : {40, 89, 100}) { for (size_t kern : kernel) { pack(n, group, size, size, kern, stride, nlmode, pad); } } } } } } return args; } void BENCHMARK_GROUPCONV_NCHW44_int8x8x16VS_int8x8x32( const char* algo_name0, const char* algo_name1, Handle* handle, size_t kernel, size_t stride = 1, size_t pack_size = 1) { auto args = get_nchw44_channel_wise_benchmark_args( {2, 3, 5}, stride, false, true, true); using namespace conv_bias; constexpr size_t RUN = 10; Benchmarker benchmark(handle); benchmark.set_display(false); benchmark.set_times(RUN); benchmark.set_dtype(0, dtype::Int8()); benchmark.set_dtype(1, dtype::Int8()); benchmark.set_dtype(2, dtype::Int32()); benchmark.set_dtype(4, dtype::Int32()); Benchmarker benchmark_algo1(handle); benchmark_algo1.set_display(false); benchmark_algo1.set_times(RUN); benchmark_algo1.set_dtype(0, dtype::Int8()); benchmark_algo1.set_dtype(1, dtype::Int8()); benchmark_algo1.set_dtype(2, dtype::Int16()); benchmark_algo1.set_dtype(4, dtype::Int16()); for (auto&& arg : args) { TensorLayout dst_layout; auto opr = handle->create_operator(); opr->param() = arg.param; opr->deduce_layout( {arg.src, dtype::Float32()}, {arg.filter, dtype::Float32()}, {arg.bias, dtype::Float32()}, {}, dst_layout); //! dst.nr_elems * IC * FH * FW * 2 float computations = dst_layout.total_nr_elems() * arg.filter[1] * arg.filter[2] * arg.filter[3] * 2.0 * pack_size / (1024 * 1024 * 1024) * 1e3; benchmark.set_param(arg.param); auto used = algo_benchmark( benchmark, {arg.src, arg.filter, {}, {}, {}}, algo_name0) / RUN; arg.param.nonlineMode = param::ConvBias::NonlineMode::IDENTITY; arg.param.format = param::ConvBias::Format::NCHW44; benchmark_algo1.set_param(arg.param); auto used_algo1 = algo_benchmark( benchmark_algo1, {arg.src, arg.filter, {}, {}, {}}, algo_name1) / RUN; printf("%s %s: normal: %f ms %f Gflops 8x8x16: %f ms %f GFlops " "speedup: " "%f\n", arg.src.to_string().c_str(), arg.filter.to_string().c_str(), used, computations / used, used_algo1, computations / used_algo1, used / used_algo1); } } #if MEGDNN_AARCH64 TEST_F(ARM_COMMON, BENCHMARK_NCHW_VS_NCHW44_INT8x8x32) { printf("=========================compare " "IM2COLMATMUL:AARCH64_INT8X8X32_K4X4X16, " "IM2COLMATMUL:AARCH64_INT8X8X32_MK4_4X4X16 \n"); BENCHMARK_IM2COL_NCHW44_VS_NCHW( "IM2COLMATMUL:AARCH64_INT8X8X32_K4X4X16", "IM2COLMATMUL:AARCH64_INT8X8X32_MK4_4X4X16", handle(), 3, dtype::Int8(), dtype::Int32()); } #endif TEST_F(ARM_COMMON, BENCHMARK_NCHW_VS_NCHW44_INT8x8x16) { #if MEGDNN_ARMV7 const char* default_algo = "IM2COLMATMUL:ARMV7_INT8X8X16_K4X8X8"; const char* mk4_algo = "IM2COLMATMUL:ARMV7_INT8X8X16_MK4_K8X8X4"; printf("compare %s vs %s \n", default_algo, mk4_algo); BENCHMARK_IM2COL_NCHW44_VS_NCHW( default_algo, mk4_algo, handle(), 3, dtype::Int8(), dtype::Int16()); #else const char* default_algo = "IM2COLMATMUL:AARCH64_INT8X8X16_K4X4X16"; const char* mk4_algo = "IM2COLMATMUL:AARCH64_INT8X8X16_MK4_4X4X8"; printf("compare %s vs %s \n", default_algo, mk4_algo); BENCHMARK_IM2COL_NCHW44_VS_NCHW( default_algo, mk4_algo, handle(), 3, dtype::Int8(), dtype::Int16()); #endif } TEST_F(ARM_COMMON, BENCHMARK_GROUP_CONV_NCHW44_INT8x8x32_VS_INT8x8x16_STRIDE1) { BENCHMARK_GROUPCONV_NCHW44_int8x8x16VS_int8x8x32( "S8_CHAN_WISE_STRD1_NCHW44", "S8x8x16_CHAN_WISE_STRD1_STRD2_NCHW44", handle(), 3, 1, 4); } TEST_F(ARM_COMMON, BENCHMARK_GROUP_CONV_NCHW44_INT8x8x32_VS_INT8x8x16_STRIDE2) { BENCHMARK_GROUPCONV_NCHW44_int8x8x16VS_int8x8x32( "S8_CHAN_WISE_STRD2_NCHW44", "S8x8x16_CHAN_WISE_STRD1_STRD2_NCHW44", handle(), 3, 2, 4); } TEST_F(ARM_COMMON, BENCHMARK_GROUP_CONVBIAS_QUANTIZED) { constexpr size_t RUNS = 50; param::ConvBias param; param.sparse = param::ConvBias::Sparse::GROUP; param.nonlineMode = param::ConvBias::NonlineMode::RELU; Benchmarker benchmarker_int(handle()); benchmarker_int.set_times(RUNS) .set_dtype(0, dtype::QuantizedS8(2.5f)) .set_dtype(1, dtype::QuantizedS8(2.5f)) .set_dtype(2, dtype::QuantizedS32(6.25f)) .set_dtype(4, dtype::QuantizedS8(40.25f)) .set_display(false); Benchmarker benchmarker_float(handle()); benchmarker_float.set_display(false).set_times(RUNS); auto run = [&](size_t N, size_t GROUP, size_t IC, size_t OC, size_t H, size_t W, size_t FS, size_t STRD) { megdnn_assert(IC % GROUP == 0 && OC % GROUP == 0); TensorShape src({N, IC, H, W}), filter({GROUP, OC / GROUP, IC / GROUP, FS, FS}), bias({1, OC, 1, 1}), dst({N, OC, H / STRD, W / STRD}); param.pad_h = FS / 2; param.pad_w = FS / 2; param.stride_h = STRD; param.stride_w = STRD; auto int_used = benchmarker_int.set_param(param).exec({src, filter, bias, {}, dst}) / RUNS; auto float_used = benchmarker_float.set_param(param).exec({src, filter, bias, {}, dst}) / RUNS; float computations = (IC / GROUP * FS * FS * dst.total_nr_elems() * 2 + dst.total_nr_elems()) * 1e-6; printf("run: %s %s %s->%s \nfloat: %f ms %f Gflops int: %f ms " "%f Gflops speedup: %f\n", src.to_string().c_str(), filter.to_string().c_str(), bias.to_string().c_str(), dst.to_string().c_str(), float_used, computations / float_used, int_used, computations / int_used, float_used / int_used); }; run(1, 1, 28, 28, 28, 28, 3, 1); run(1, 68, 68, 68, 14, 14, 3, 2); run(1, 96, 96, 96, 14, 14, 3, 2); run(1, 100, 100, 100, 7, 7, 3, 1); } #endif #if MEGDNN_WITH_BENCHMARK TEST_F(ARM_COMMON, BENCHMARK_CONVBIAS_MATMUL) { constexpr size_t RUNS = 10; param::ConvBias param; param.stride_h = 1; param.stride_w = 1; param.nonlineMode = param::ConvBias::NonlineMode::RELU; Benchmarker benchmarker(handle()), benchmarker_fused(handle()); benchmarker.set_times(RUNS) .set_dtype(0, dtype::QuantizedS8(2.5f)) .set_dtype(1, dtype::QuantizedS8(2.5f)) .set_dtype(2, dtype::QuantizedS32(6.25f)) .set_dtype(4, dtype::QuantizedS8(40.25f)) .set_display(false); benchmarker_fused.set_times(RUNS) .set_dtype(0, dtype::QuantizedS8(2.5f)) .set_dtype(1, dtype::QuantizedS8(2.5f)) .set_dtype(2, dtype::QuantizedS32(6.25f)) .set_dtype(4, dtype::QuantizedS8(40.25f)) .set_display(false); benchmarker_fused.set_before_exec_callback( conv_bias::ConvBiasAlgoChecker("S8MATMUL")); auto run = [&](size_t N, size_t IC, size_t OC, size_t H, size_t W, size_t FS) { TensorShape src({N, IC, H, W}), filter({OC, IC, FS, FS}), bias({1, OC, 1, 1}), dst({N, OC, H, W}); param.pad_h = FS / 2; param.pad_w = FS / 2; auto default_used = benchmarker.set_param(param).exec({src, filter, bias, {}, dst}) / RUNS; auto fused_used = benchmarker_fused.set_param(param).exec({src, filter, bias, {}, dst}) / RUNS; float computations = IC * (FS * FS + 1) * dst.total_nr_elems() * 2 * 1e-6; printf("run: %s %s %s->%s \ndefault: %f ms %f Gflops fused: %f ms " "%f Gflops speedup: %f\n", src.to_string().c_str(), filter.to_string().c_str(), bias.to_string().c_str(), dst.to_string().c_str(), default_used, computations / default_used, fused_used, computations / fused_used, default_used / fused_used); }; run(1, 128, 128, 32, 32, 3); for (size_t IC : {36, 48}) { for (size_t OC : {36, 48, 64}) { for (size_t size : {56, 128, 256}) { for (size_t FS : {1, 3, 5}) { run(1, IC, OC, size, size, FS); } } } } } #endif #if MEGDNN_WITH_BENCHMARK TEST_F(ARM_COMMON, BENCHMARK_CONVBIAS_8X8X16_DIRECT_STRIDE1) { benchmark_nchw44_8x8x16_vs_8x8x32("S8x8x16_NCHW44_DIRECT", handle(), 2, 1, 4); benchmark_nchw44_8x8x16_vs_8x8x32("S8x8x16_NCHW44_DIRECT", handle(), 3, 1, 4); benchmark_nchw44_8x8x16_vs_8x8x32("S8x8x16_NCHW44_DIRECT", handle(), 5, 1, 4); benchmark_nchw44_8x8x16_vs_8x8x32("S8x8x16_NCHW44_DIRECT", handle(), 7, 1, 4); } TEST_F(ARM_COMMON, BENCHMARK_CONVBIAS_8X8X16_DIRECT_STRIDE2) { benchmark_nchw44_8x8x16_vs_8x8x32("S8x8x16_NCHW44_DIRECT", handle(), 2, 2, 4); benchmark_nchw44_8x8x16_vs_8x8x32("S8x8x16_NCHW44_DIRECT", handle(), 3, 2, 4); benchmark_nchw44_8x8x16_vs_8x8x32("S8x8x16_NCHW44_DIRECT", handle(), 5, 2, 4); benchmark_nchw44_8x8x16_vs_8x8x32("S8x8x16_NCHW44_DIRECT", handle(), 7, 2, 4); } TEST_F(ARM_COMMON, BENCHMARK_CONVBIAS_WINOGRAD_F23) { #if MEGDNN_AARCH64 benchmark_winograd("WINOGRAD:AARCH64_F32:1:2", handle(), 3); #else benchmark_winograd("WINOGRAD:ARMV7_F32_:1:2", handle(), 3); #endif } TEST_F(ARM_COMMON, BENCHMARK_CONVBIAS_WINOGRAD_F23_4x4) { #if MEGDNN_AARCH64 benchmark_winograd("WINOGRAD:AARCH64_F32_MK4_4x16:4:2", handle(), 3, 4); #else benchmark_winograd("WINOGRAD:ARMV7_F32_MK4_4x8:4:2", handle(), 3, 4); #endif } TEST_F(ARM_COMMON, BENCHMARK_CONVBIAS_WINOGRAD_F63) { #if MEGDNN_AARCH64 benchmark_winograd("WINOGRAD:AARCH64_F32K8X12X1:1:6", handle(), 3); #else benchmark_winograd("WINOGRAD:ARMV7_F32:1:6", handle(), 3); #endif } TEST_F(ARM_COMMON, BENCHMARK_CONVBIAS_WINOGRAD_F63_4x4) { #if MEGDNN_AARCH64 benchmark_winograd("WINOGRAD:AARCH64_F32_MK4_4x16:4:6", handle(), 3, 4); #else benchmark_winograd("WINOGRAD:ARMV7_F32_MK4_4x8:4:6", handle(), 3, 4); #endif } TEST_F(ARM_COMMON, BENCHMARK_CONVBIAS_WINOGRAD_F54) { #if MEGDNN_AARCH64 benchmark_winograd("WINOGRAD:AARCH64_F32K8X12X1:1:5", handle(), 4); #else benchmark_winograd("WINOGRAD:ARMV7_F32:1:5", handle(), 4); #endif } TEST_F(ARM_COMMON, BENCHMARK_CONVBIAS_WINOGRAD_F45) { #if MEGDNN_AARCH64 benchmark_winograd("WINOGRAD:AARCH64_F32K8X12X1:1:4", handle(), 5); #else benchmark_winograd("WINOGRAD:ARMV7_F32:1:4", handle(), 5); #endif } #if __ARM_FEATURE_FP16_VECTOR_ARITHMETIC TEST_F(ARM_COMMON, BENCHMARK_CONVBIAS_WINOGRAD_F16_F23) { #if MEGDNN_AARCH64 benchmark_winograd_fp16( "WINOGRAD:AARCH64_F32_MK4_4x16:4:2", "WINOGRAD:AARCH64_F16_K8X24X1:1:6", handle(), 3, 4); #else benchmark_winograd_fp16( "WINOGRAD:ARMV7_F32:1:2", "WINOGRAD:AARCH32_F16_K4X16X1:1:2", handle(), 3); #endif } TEST_F(ARM_COMMON, BENCHMARK_CONVBIAS_WINOGRAD_F16_F45) { #if MEGDNN_AARCH64 benchmark_winograd_fp16( "WINOGRAD:AARCH64_F32K8X12X1:1:4", "WINOGRAD:AARCH64_F16_K8X24X1:1:4", handle(), 5); #else benchmark_winograd_fp16( "WINOGRAD:ARMV7_F32:1:4", "WINOGRAD:AARCH32_F16_K4X16X1:1:4", handle(), 5); #endif } TEST_F(ARM_COMMON, BENCHMARK_CONVBIAS_WINOGRAD_F16_F63) { #if MEGDNN_AARCH64 benchmark_winograd_fp16( "WINOGRAD:AARCH64_F32K8X12X1:1:6", "WINOGRAD:AARCH64_F16_K8X24X1:1:6", handle(), 3); #else benchmark_winograd_fp16( "WINOGRAD:ARMV7_F32:1:6", "WINOGRAD:AARCH32_F16_K4X16X1:1:6", handle(), 3); #endif } TEST_F(ARM_COMMON, BENCHMARK_CONVBIAS_WINOGRAD_F16_F23_8x8) { #if MEGDNN_AARCH64 benchmark_winograd_fp16( "WINOGRAD:AARCH64_F32_MK4_4x16:4:2", "WINOGRAD:AARCH64_F16_MK8_8X8:8:2", handle(), 3, 8); #else benchmark_winograd_fp16( "WINOGRAD:ARMV7_F32_MK4_4x8:4:2", "WINOGRAD:AARCH32_F16_MK8_4X8:8:2", handle(), 3, 8); #endif } #endif void benchmark_winograd_nchw_vs_nchw44( const char* algo_name0, const char* algo_name1, Handle* handle) { using namespace conv_bias; using NLMode = param::ConvBias::NonlineMode; std::vector args_nchw44; std::vector args_nchw; auto pack = [&](size_t n, size_t oc, size_t ic, size_t h, size_t w, size_t group, NLMode nlmode) { param::ConvBias param; param.format = param::ConvBias::Format::NCHW44; param.stride_h = 1; param.stride_w = 1; param.pad_h = 1; param.pad_w = 1; param.nonlineMode = nlmode; if (group == 1) { param.sparse = param::ConvBias::Sparse::DENSE; args_nchw44.emplace_back( param, TensorShape{n, ic / 4, h, w, 4}, TensorShape{oc / 4, ic / 4, 3, 3, 4, 4}, TensorShape{}); param.format = param::ConvBias::Format::NCHW; args_nchw.emplace_back( param, TensorShape{n, ic, h, w}, TensorShape{oc, ic, 3, 3}, TensorShape{}); } else { auto oc_per_group = oc / group; auto ic_per_group = ic / group; param.sparse = param::ConvBias::Sparse::GROUP; args_nchw44.emplace_back( param, TensorShape{n, ic_per_group / 4, h, w, 4}, TensorShape{group, oc_per_group / 4, ic_per_group / 4, 3, 3, 4, 4}, TensorShape{}); param.format = param::ConvBias::Format::NCHW; args_nchw.emplace_back( param, TensorShape{n, ic, h, w}, TensorShape{group, oc_per_group, ic_per_group, 3, 3}, TensorShape{}); } }; std::vector nonlinemode = {NLMode::IDENTITY}; for (auto nlmode : nonlinemode) for (size_t n : {1}) for (size_t group = 1; group <= 1; ++group) { pack(n, 512, 512, 15, 15, group, nlmode); pack(n, 512, 256, 15, 15, group, nlmode); pack(n, 256, 256, 29, 29, group, nlmode); pack(n, 256, 128, 29, 29, group, nlmode); pack(n, 128, 128, 57, 57, group, nlmode); pack(n, 128, 64, 57, 57, group, nlmode); pack(n, 24, 24, 224, 224, group, nlmode); pack(n, 64, 24, 123, 123, group, nlmode); pack(n, 64, 64, 56, 56, group, nlmode); pack(n, 128, 128, 28, 28, group, nlmode); pack(n, 256, 256, 14, 14, group, nlmode); pack(n, 512, 512, 7, 7, group, nlmode); } using namespace conv_bias; constexpr size_t RUN = 10; Benchmarker benchmark_winograd_nchw(handle); benchmark_winograd_nchw.set_display(false); benchmark_winograd_nchw.set_times(RUN); Benchmarker benchmark_winograd_nchw44(handle); benchmark_winograd_nchw44.set_display(false); benchmark_winograd_nchw44.set_times(RUN); std::string winograd_nchw_algo_name = ssprintf("WINOGRAD:%s", algo_name0); std::string winograd_nchw44_algo_name = ssprintf("WINOGRAD_NCHW44:%s", algo_name1); for (size_t i = 0; i < args_nchw.size(); ++i) { auto arg_nchw = args_nchw[i]; auto arg_nchw44 = args_nchw44[i]; TensorLayout dst_layout; auto opr = handle->create_operator(); opr->param() = arg_nchw.param; opr->deduce_layout( {arg_nchw.src, dtype::Float32()}, {arg_nchw.filter, dtype::Float32()}, {arg_nchw.bias, dtype::Float32()}, {}, dst_layout); //! dst.nr_elems * IC * FH * FW * 2 float computations = dst_layout.total_nr_elems() * arg_nchw.filter[1] * arg_nchw.filter[2] * arg_nchw.filter[3] * 2.0 / (1024 * 1024 * 1024) * 1e3; benchmark_winograd_nchw.set_param(arg_nchw.param); auto nchw_used = algo_benchmark( benchmark_winograd_nchw, {arg_nchw.src, arg_nchw.filter, {}, {}, {}}, winograd_nchw_algo_name.c_str()) / RUN; benchmark_winograd_nchw44.set_param(arg_nchw44.param); auto nchw44_used = algo_benchmark( benchmark_winograd_nchw44, {arg_nchw44.src, arg_nchw44.filter, {}, {}, {}}, winograd_nchw44_algo_name.c_str()) / RUN; printf("%s %s: nchw: %f ms %f Gflops nchw44: %f ms %f GFlops " "speedup: " "%f\n", arg_nchw.src.to_string().c_str(), arg_nchw.filter.to_string().c_str(), nchw_used, computations / nchw_used, nchw44_used, computations / nchw44_used, nchw_used / nchw44_used); } } TEST_F(ARM_COMMON, BENCHMARK_CONVBIAS_WINOGRAD_F23_MK4_NCHW_VS_NCHW44) { #if MEGDNN_AARCH64 benchmark_winograd_nchw_vs_nchw44( "AARCH64_F32_MK4_4x16:4:2", "AARCH64_F32_MK4_4x16:4:2", handle()); #else benchmark_winograd_nchw_vs_nchw44( "ARMV7_F32_MK4_4x8:4:2", "ARMV7_F32_MK4_4x8:4:2", handle()); #endif } TEST_F(ARM_COMMON, BENCHMARK_CONVBIAS_WINOGRAD_F63_MK4_NCHW_VS_NCHW44) { #if MEGDNN_AARCH64 benchmark_winograd_nchw_vs_nchw44( "AARCH64_F32_MK4_4x16:4:6", "AARCH64_F32_MK4_4x16:4:6", handle()); #else benchmark_winograd_nchw_vs_nchw44( "ARMV7_F32_MK4_4x8:4:6", "ARMV7_F32_MK4_4x8:4:6", handle()); #endif } TEST_F(ARM_COMMON, BENCHMARK_CONVBIAS_WINOGRAD_F73_MK4_NCHW_VS_NCHW44) { #if MEGDNN_AARCH64 benchmark_winograd_nchw_vs_nchw44( "AARCH64_F32_MK4_4x16:4:6", "ARM_COMMON_F32_GEMV_MK4:4:7", handle()); #else benchmark_winograd_nchw_vs_nchw44( "ARMV7_F32_MK4_4x8:4:6", "ARMV7_F32_MK4_4x8:4:7", handle()); #endif } TEST_F(ARM_COMMON, BENCHMARK_CONVBIAS_WINOGRAD_F23_8x8) { auto benchmark_winograd_quantized = [](const char* algo_name_fp32, const char* algo_name_quantized, Handle* handle, size_t kernel) { auto&& args = get_winograd_benchmark_args(kernel); using namespace conv_bias; constexpr size_t RUN = 10; Benchmarker benchmark(handle); benchmark.set_display(false); benchmark.set_times(RUN); Benchmarker benchmark_winograd(handle); benchmark_winograd.set_display(false).set_times(RUN); benchmark_winograd.set_dtype(0, dtype::QuantizedS8(2.5f)) .set_dtype(1, dtype::QuantizedS8(2.5f)) .set_dtype(2, dtype::QuantizedS32(6.25f)) .set_dtype(4, dtype::QuantizedS8(60.25f)); for (auto&& arg : args) { TensorLayout dst_layout; auto opr = handle->create_operator(); opr->param() = arg.param; opr->deduce_layout( {arg.src, dtype::Float32()}, {arg.filter, dtype::Float32()}, {arg.bias, dtype::Float32()}, {}, dst_layout); //! dst.nr_elems * IC * FH * FW * 2 float computations = dst_layout.total_nr_elems() * arg.filter[1] * arg.filter[2] * arg.filter[3] * 2.0 / (1024 * 1024 * 1024) * 1e3; benchmark.set_param(arg.param); auto used = algo_benchmark( benchmark, {arg.src, arg.filter, {}, {}, {}}, algo_name_fp32) / RUN; benchmark_winograd.set_param(arg.param); auto used_winograd = algo_benchmark( benchmark_winograd, {arg.src, arg.filter, {}, {}, {}}, algo_name_quantized) / RUN; printf("%s %s: normal: %f ms %f Gflops winograd: %f ms %f GFlops " "speedup: " "%f\n", arg.src.to_string().c_str(), arg.filter.to_string().c_str(), used, computations / used, used_winograd, computations / used_winograd, used / used_winograd); } }; #if MEGDNN_AARCH64 benchmark_winograd_quantized( "WINOGRAD:AARCH64_F32_MK4_4x16:4:2", "WINOGRAD:AARCH64_INT16X16X32_MK8_8X8:8:2", handle(), 3); #else benchmark_winograd_quantized( "WINOGRAD:ARMV7_F32_MK4_4x8:4:2", "WINOGRAD:ARMV7_INT16X16X32_MK8_4X8:8:2", handle(), 3); #endif } TEST_F(ARM_COMMON, BENCHMARK_CONV_BIAS_INT8_STRIDE1) { // have to remove preferred restrict in usable func before run the benchmark using namespace conv_bias; std::vector args; auto run = [&](size_t oc, size_t ic, size_t w, size_t h, size_t kernel, size_t p, NonlineMode nonline_mode) { if (w + 2 * p < kernel || h + 2 * p < kernel) return; param::ConvBias param; param.stride_h = 1; param.stride_w = 1; param.pad_h = p; param.pad_w = p; param.nonlineMode = nonline_mode; //! channel bias args.emplace_back( param, TensorShape{2, ic, h, w}, TensorShape{oc, ic, kernel, kernel}, TensorShape{1, oc, 1, 1}); }; for (size_t kernel : {2, 3, 5, 7}) for (size_t ic : {1, 8, 16, 32}) for (size_t oc : {1, 8, 16, 32}) for (size_t p : {1}) for (NonlineMode nonline_mode : {NonlineMode::RELU}) { run(oc, ic, 56, 56, kernel, p, nonline_mode); run(oc, ic, 128, 128, kernel, p, nonline_mode); run(oc, ic, 256, 256, kernel, p, nonline_mode); } constexpr size_t RUN = 50; Benchmarker benchmark0(handle()); benchmark0.set_dtype(0, dtype::QuantizedS8(2.5f)) .set_dtype(1, dtype::QuantizedS8(2.5f)) .set_dtype(2, dtype::QuantizedS32(6.25f)) .set_dtype(4, dtype::QuantizedS8(60.25f)); benchmark0.set_display(false); benchmark0.set_times(RUN); benchmark0.set_before_exec_callback( conv_bias::ConvBiasAlgoChecker("S8STRD1")); Benchmarker benchmark1(handle()); benchmark1.set_dtype(0, dtype::QuantizedS8(2.5f)) .set_dtype(1, dtype::QuantizedS8(2.5f)) .set_dtype(2, dtype::QuantizedS32(6.25f)) .set_dtype(4, dtype::QuantizedS8(60.25f)); benchmark1.set_display(false); benchmark1.set_times(RUN); for (auto&& arg : args) { TensorLayout dst_layout; auto opr = handle()->create_operator(); opr->param() = arg.param; opr->deduce_layout( {arg.src, dtype::Int8()}, {arg.filter, dtype::Int8()}, {arg.bias, dtype::Int32()}, {}, dst_layout); //! dst.nr_elems * IC * FH * FW * 2 float computations = dst_layout.total_nr_elems() * arg.filter[1] * arg.filter[2] * arg.filter[3] * 2.0 / (1024 * 1024 * 1024) * 1e3; auto used0 = benchmark0.set_param(arg.param).exec( {arg.src, arg.filter, arg.bias, {}, {}}) / RUN; auto used1 = benchmark1.set_param(arg.param).exec( {arg.src, arg.filter, arg.bias, {}, {}}) / RUN; printf("%s %s: conv_bias: %f ms %f Gflops conv_elem: %f ms %f GFlops " "speedup: %f\n", arg.src.to_string().c_str(), arg.filter.to_string().c_str(), used0, computations / used0, used1, computations / used1, used1 / used0); } } TEST_F(ARM_COMMON, BENCHMARK_CONV_BIAS_INT8_STRIDE2) { // have to remove preferred restrict in usable func before run the benchmark using namespace conv_bias; std::vector args; auto run = [&](size_t oc, size_t ic, size_t w, size_t h, size_t kernel, size_t p, NonlineMode nonline_mode) { if (w + 2 * p < kernel || h + 2 * p < kernel) return; param::ConvBias param; param.stride_h = 2; param.stride_w = 2; param.pad_h = p; param.pad_w = p; param.nonlineMode = nonline_mode; //! channel bias args.emplace_back( param, TensorShape{2, ic, h, w}, TensorShape{oc, ic, kernel, kernel}, TensorShape{1, oc, 1, 1}); }; for (size_t kernel : {2, 3, 5, 7}) for (size_t ic : {1, 8, 16, 32}) for (size_t oc : {1, 8, 16, 32}) for (size_t p : {1}) for (NonlineMode nonline_mode : {NonlineMode::RELU}) { run(oc, ic, 56, 56, kernel, p, nonline_mode); run(oc, ic, 128, 128, kernel, p, nonline_mode); run(oc, ic, 256, 256, kernel, p, nonline_mode); } constexpr size_t RUN = 50; Benchmarker benchmark0(handle()); benchmark0.set_dtype(0, dtype::QuantizedS8(2.5f)) .set_dtype(1, dtype::QuantizedS8(2.5f)) .set_dtype(2, dtype::QuantizedS32(6.25f)) .set_dtype(4, dtype::QuantizedS8(60.25f)); benchmark0.set_display(false); benchmark0.set_times(RUN); benchmark0.set_before_exec_callback( conv_bias::ConvBiasAlgoChecker("S8STRD2")); Benchmarker benchmark1(handle()); benchmark1.set_dtype(0, dtype::QuantizedS8(2.5f)) .set_dtype(1, dtype::QuantizedS8(2.5f)) .set_dtype(2, dtype::QuantizedS32(6.25f)) .set_dtype(4, dtype::QuantizedS8(60.25f)); benchmark1.set_display(false); benchmark1.set_times(RUN); for (auto&& arg : args) { TensorLayout dst_layout; auto opr = handle()->create_operator(); opr->param() = arg.param; opr->deduce_layout( {arg.src, dtype::Int8()}, {arg.filter, dtype::Int8()}, {arg.bias, dtype::Int32()}, {}, dst_layout); //! dst.nr_elems * IC * FH * FW * 2 float computations = dst_layout.total_nr_elems() * arg.filter[1] * arg.filter[2] * arg.filter[3] * 2.0 / (1024 * 1024 * 1024) * 1e3; auto used0 = benchmark0.set_param(arg.param).exec( {arg.src, arg.filter, arg.bias, {}, {}}) / RUN; auto used1 = benchmark1.set_param(arg.param).exec( {arg.src, arg.filter, arg.bias, {}, {}}) / RUN; printf("%s %s: conv_bias: %f ms %f Gflops conv_elem: %f ms %f GFlops " "speedup: %f\n", arg.src.to_string().c_str(), arg.filter.to_string().c_str(), used0, computations / used0, used1, computations / used1, used1 / used0); } } TEST_F(ARM_COMMON, BENCHMARK_CONV_BIAS_QUINT8_STRIDE1) { // have to remove preferred restrict in usable func before run the benchmark using namespace conv_bias; std::vector args; auto run = [&](size_t oc, size_t ic, size_t w, size_t h, size_t kernel, size_t p, NonlineMode nonline_mode) { if (w + 2 * p < kernel || h + 2 * p < kernel) return; param::ConvBias param; param.stride_h = 1; param.stride_w = 1; param.pad_h = p; param.pad_w = p; param.nonlineMode = nonline_mode; //! channel bias args.emplace_back( param, TensorShape{2, ic, h, w}, TensorShape{oc, ic, kernel, kernel}, TensorShape{1, oc, 1, 1}); }; for (size_t kernel : {2, 3, 5, 7}) for (size_t ic : {1, 8, 16, 32}) for (size_t oc : {1, 8, 16, 32}) for (size_t p : {1}) for (NonlineMode nonline_mode : {NonlineMode::RELU}) { run(oc, ic, 56, 56, kernel, p, nonline_mode); run(oc, ic, 128, 128, kernel, p, nonline_mode); run(oc, ic, 256, 256, kernel, p, nonline_mode); } constexpr size_t RUN = 50; Benchmarker benchmark0(handle()); benchmark0.set_dtype(0, dtype::Quantized8Asymm(0.2f, static_cast(100))) .set_dtype(1, dtype::Quantized8Asymm(0.2f, static_cast(120))) .set_dtype(2, dtype::QuantizedS32(0.04f)) .set_dtype(4, dtype::Quantized8Asymm(1.4f, static_cast(110))); benchmark0.set_display(false); benchmark0.set_times(RUN); benchmark0.set_before_exec_callback( conv_bias::ConvBiasAlgoChecker("QU8STRD1")); Benchmarker benchmark1(handle()); benchmark1.set_dtype(0, dtype::Quantized8Asymm(0.2f, static_cast(100))) .set_dtype(1, dtype::Quantized8Asymm(0.2f, static_cast(120))) .set_dtype(2, dtype::QuantizedS32(0.04f)) .set_dtype(4, dtype::Quantized8Asymm(1.4f, static_cast(110))); benchmark1.set_display(false); benchmark1.set_times(RUN); for (auto&& arg : args) { TensorLayout dst_layout; auto opr = handle()->create_operator(); opr->param() = arg.param; opr->deduce_layout( {arg.src, dtype::Int8()}, {arg.filter, dtype::Int8()}, {arg.bias, dtype::Int32()}, {}, dst_layout); //! dst.nr_elems * IC * FH * FW * 2 float computations = dst_layout.total_nr_elems() * arg.filter[1] * arg.filter[2] * arg.filter[3] * 2.0 / (1024 * 1024 * 1024) * 1e3; auto used0 = benchmark0.set_param(arg.param).exec( {arg.src, arg.filter, arg.bias, {}, {}}) / RUN; auto used1 = benchmark1.set_param(arg.param).exec( {arg.src, arg.filter, arg.bias, {}, {}}) / RUN; printf("%s %s: conv_bias: %f ms %f Gflops conv_elem: %f ms %f GFlops " "speedup: %f\n", arg.src.to_string().c_str(), arg.filter.to_string().c_str(), used0, computations / used0, used1, computations / used1, used1 / used0); } } TEST_F(ARM_COMMON, BENCHMARK_CONV_BIAS_QUINT8_STRIDE2) { // have to remove preferred restrict in usable func before run the benchmark using namespace conv_bias; std::vector args; auto run = [&](size_t oc, size_t ic, size_t w, size_t h, size_t kernel, size_t p, NonlineMode nonline_mode) { if (w + 2 * p < kernel || h + 2 * p < kernel) return; param::ConvBias param; param.stride_h = 2; param.stride_w = 2; param.pad_h = p; param.pad_w = p; param.nonlineMode = nonline_mode; //! channel bias args.emplace_back( param, TensorShape{2, ic, h, w}, TensorShape{oc, ic, kernel, kernel}, TensorShape{1, oc, 1, 1}); }; for (size_t kernel : {2, 3, 5, 7}) for (size_t ic : {1, 8, 16, 32}) for (size_t oc : {1, 8, 16, 32}) for (size_t p : {1}) for (NonlineMode nonline_mode : {NonlineMode::RELU}) { run(oc, ic, 56, 56, kernel, p, nonline_mode); run(oc, ic, 128, 128, kernel, p, nonline_mode); run(oc, ic, 256, 256, kernel, p, nonline_mode); } constexpr size_t RUN = 50; Benchmarker benchmark0(handle()); benchmark0.set_dtype(0, dtype::Quantized8Asymm(0.2f, static_cast(100))) .set_dtype(1, dtype::Quantized8Asymm(0.2f, static_cast(120))) .set_dtype(2, dtype::QuantizedS32(0.04f)) .set_dtype(4, dtype::Quantized8Asymm(1.4f, static_cast(110))); benchmark0.set_display(false); benchmark0.set_times(RUN); benchmark0.set_before_exec_callback( conv_bias::ConvBiasAlgoChecker("QU8STRD2")); Benchmarker benchmark1(handle()); benchmark1.set_dtype(0, dtype::Quantized8Asymm(0.2f, static_cast(100))) .set_dtype(1, dtype::Quantized8Asymm(0.2f, static_cast(120))) .set_dtype(2, dtype::QuantizedS32(0.04f)) .set_dtype(4, dtype::Quantized8Asymm(1.4f, static_cast(110))); benchmark1.set_display(false); benchmark1.set_times(RUN); for (auto&& arg : args) { TensorLayout dst_layout; auto opr = handle()->create_operator(); opr->param() = arg.param; opr->deduce_layout( {arg.src, dtype::Int8()}, {arg.filter, dtype::Int8()}, {arg.bias, dtype::Int32()}, {}, dst_layout); //! dst.nr_elems * IC * FH * FW * 2 float computations = dst_layout.total_nr_elems() * arg.filter[1] * arg.filter[2] * arg.filter[3] * 2.0 / (1024 * 1024 * 1024) * 1e3; auto used0 = benchmark0.set_param(arg.param).exec( {arg.src, arg.filter, arg.bias, {}, {}}) / RUN; auto used1 = benchmark1.set_param(arg.param).exec( {arg.src, arg.filter, arg.bias, {}, {}}) / RUN; printf("%s %s: conv_bias: %f ms %f Gflops conv_elem: %f ms %f GFlops " "speedup: %f\n", arg.src.to_string().c_str(), arg.filter.to_string().c_str(), used0, computations / used0, used1, computations / used1, used1 / used0); } } TEST_F(ARM_COMMON, BENCHMARK_CHANNEL_WISE_F32_STRIDE1_NCHW44) { // have to remove preferred restrict in usable func before run the benchmark using namespace conv_bias; param::ConvBias param; param.stride_h = 1; param.stride_w = 1; param.pad_h = 1; param.pad_w = 1; param.nonlineMode = NonlineMode::RELU; param.sparse = param::ConvBias::Sparse::GROUP; constexpr size_t RUN = 50; Benchmarker benchmark0(handle()); benchmark0.set_display(false); benchmark0.set_param(param); benchmark0.set_times(RUN); benchmark0.set_before_exec_callback( conv_bias::ConvBiasAlgoChecker("F32STRD1")); auto opr = handle()->create_operator(); opr->param() = param; param.format = param::ConvBias::Format::NCHW44; Benchmarker benchmark1(handle()); benchmark1.set_display(false); benchmark1.set_param(param); benchmark1.set_times(RUN); benchmark1.set_before_exec_callback( conv_bias::ConvBiasAlgoChecker("F32_CHANNEL_WISE_NCHW44")); auto run = [&](size_t group, size_t w, size_t h, size_t kernel) { TensorLayout dst_layout; opr->deduce_layout( {{1, group * 4, h, w}, dtype::Int8()}, {{group * 4, 1, 1, kernel, kernel}, dtype::Int8()}, {{1, group * 4, 1, 1}, dtype::Int32()}, {}, dst_layout); //! dst.nr_elems * IC * FH * FW * 2 float computations = dst_layout.total_nr_elems() * kernel * kernel * 2.0 / (1024 * 1024 * 1024) * 1e3; auto used0 = benchmark0.exec( {{1, group * 4, h, w}, {group * 4, 1, 1, kernel, kernel}, {1, group * 4, 1, 1}, {}, {}}) / RUN; auto used1 = benchmark1.exec( {{1, group, h, w, 4}, {group, 1, 1, kernel, kernel, 4}, {1, group, 1, 1, 4}, {}, {}}) / RUN; printf("group/h/w/kernel:%zu,%zu,%zu,%zu: nchw: %f ms %f Gflops " "nchw44: " "%f ms %f GFlops " "speedup: %f\n", group, h, w, kernel, used0, computations / used0, used1, computations / used1, used0 / used1); }; for (size_t group : {8, 16, 32, 64}) { for (size_t kerenl : {2, 3, 5}) { run(group, 112, 112, kerenl); run(group, 56, 56, kerenl); run(group, 48, 48, kerenl); run(group, 28, 28, kerenl); run(group, 14, 14, kerenl); } } run(8, 112, 112, 3); run(32, 56, 56, 3); run(64, 28, 28, 3); run(128, 14, 14, 3); } TEST_F(ARM_COMMON, BENCHMARK_CHANNEL_WISE_F32_STRIDE2_NCHW44) { // have to remove preferred restrict in usable func before run the benchmark using namespace conv_bias; param::ConvBias param; param.stride_h = 2; param.stride_w = 2; param.pad_h = 1; param.pad_w = 1; param.nonlineMode = NonlineMode::RELU; param.sparse = param::ConvBias::Sparse::GROUP; constexpr size_t RUN = 50; Benchmarker benchmark0(handle()); benchmark0.set_display(false); benchmark0.set_param(param); benchmark0.set_times(RUN); benchmark0.set_before_exec_callback( conv_bias::ConvBiasAlgoChecker("F32STRD2")); auto opr = handle()->create_operator(); opr->param() = param; param.format = param::ConvBias::Format::NCHW44; Benchmarker benchmark1(handle()); benchmark1.set_display(false); benchmark1.set_param(param); benchmark1.set_times(RUN); benchmark1.set_before_exec_callback( conv_bias::ConvBiasAlgoChecker("F32_CHANNEL_WISE_NCHW44")); auto run = [&](size_t group, size_t w, size_t h, size_t kernel) { TensorLayout dst_layout; opr->deduce_layout( {{1, group * 4, h, w}, dtype::Int8()}, {{group * 4, 1, 1, kernel, kernel}, dtype::Int8()}, {{1, group * 4, 1, 1}, dtype::Int32()}, {}, dst_layout); //! dst.nr_elems * IC * FH * FW * 2 float computations = dst_layout.total_nr_elems() * kernel * kernel * 2.0 / (1024 * 1024 * 1024) * 1e3; auto used0 = benchmark0.exec( {{1, group * 4, h, w}, {group * 4, 1, 1, kernel, kernel}, {1, group * 4, 1, 1}, {}, {}}) / RUN; auto used1 = benchmark1.exec( {{1, group, h, w, 4}, {group, 1, 1, kernel, kernel, 4}, {1, group, 1, 1, 4}, {}, {}}) / RUN; printf("group/h/w/kernel:%zu,%zu,%zu,%zu: nchw: %f ms %f Gflops " "nchw44: " "%f ms %f GFlops " "speedup: %f\n", group, h, w, kernel, used0, computations / used0, used1, computations / used1, used0 / used1); }; for (size_t group : {8, 16, 32, 64}) { for (size_t kerenl : {2, 3, 5}) { run(group, 112, 112, kerenl); run(group, 56, 56, kerenl); run(group, 48, 48, kerenl); run(group, 28, 28, kerenl); run(group, 14, 14, kerenl); } } run(8, 112, 112, 3); run(32, 56, 56, 3); run(64, 28, 28, 3); run(128, 14, 14, 3); } TEST_F(ARM_COMMON, BENCHMARK_CONV_BIAS_QINT8_STRIDE1_NCHW44) { // have to remove preferred restrict in usable func before run the benchmark using namespace conv_bias; param::ConvBias param; param.stride_h = 1; param.stride_w = 1; param.pad_h = 1; param.pad_w = 1; param.nonlineMode = NonlineMode::RELU; param.sparse = param::ConvBias::Sparse::GROUP; constexpr size_t RUN = 50; Benchmarker benchmark0(handle()); benchmark0.set_dtype(0, dtype::QuantizedS8(0.2f)) .set_dtype(1, dtype::QuantizedS8(0.2f)) .set_dtype(2, dtype::QuantizedS32(0.04f)) .set_dtype(4, dtype::QuantizedS8(1.4f)); benchmark0.set_display(false); benchmark0.set_param(param); benchmark0.set_times(RUN); benchmark0.set_before_exec_callback( conv_bias::ConvBiasAlgoChecker("S8STRD1")); auto opr = handle()->create_operator(); opr->param() = param; param.format = param::ConvBias::Format::NCHW44; Benchmarker benchmark1(handle()); benchmark1.set_dtype(0, dtype::QuantizedS8(0.2f)) .set_dtype(1, dtype::QuantizedS8(0.2f)) .set_dtype(2, dtype::QuantizedS32(0.04f)) .set_dtype(4, dtype::QuantizedS8(1.4f)); benchmark1.set_display(false); benchmark1.set_param(param); benchmark1.set_times(RUN); benchmark1.set_before_exec_callback(conv_bias::ConvBiasAlgoChecker( "S8_CHAN_WISE_STRD1_NCHW44")); auto run = [&](size_t group, size_t w, size_t h, size_t kernel) { TensorLayout dst_layout; opr->deduce_layout( {{1, group * 4, h, w}, dtype::Int8()}, {{group * 4, 1, 1, kernel, kernel}, dtype::Int8()}, {{1, group * 4, 1, 1}, dtype::Int32()}, {}, dst_layout); //! dst.nr_elems * IC * FH * FW * 2 float computations = dst_layout.total_nr_elems() * kernel * kernel * 2.0 / (1024 * 1024 * 1024) * 1e3; auto used0 = benchmark0.exec( {{1, group * 4, h, w}, {group * 4, 1, 1, kernel, kernel}, {1, group * 4, 1, 1}, {}, {}}) / RUN; auto used1 = benchmark1.exec( {{1, group, h, w, 4}, {group, 1, 1, kernel, kernel, 4}, {1, group, 1, 1, 4}, {}, {}}) / RUN; printf("group/h/w/kernel:%zu,%zu,%zu,%zu: nchw: %f ms %f Gflops " "nchw44: " "%f ms %f GFlops " "speedup: %f\n", group, h, w, kernel, used0, computations / used0, used1, computations / used1, used0 / used1); }; for (size_t group : {8, 16, 32, 64, 128}) { for (size_t kerenl : {2, 3, 5}) { run(group, 112, 112, kerenl); run(group, 56, 56, kerenl); run(group, 48, 48, kerenl); run(group, 28, 28, kerenl); run(group, 14, 14, kerenl); } } } #endif #if MGB_ENBALE_DOT #if MEGDNN_WITH_BENCHMARK TEST_F(ARM_COMMON, BENCHMARK_CONV_BIAS_INT8_STRIDE1_WITHDOTPROD) { // have to remove preferred restrict in usable func before run the benchmark using namespace conv_bias; std::vector args; auto run = [&](size_t oc, size_t ic, size_t w, size_t h, size_t kernel, size_t p, NonlineMode nonline_mode) { if (w + 2 * p < kernel || h + 2 * p < kernel) return; param::ConvBias param; param.stride_h = 1; param.stride_w = 1; param.pad_h = p; param.pad_w = p; param.nonlineMode = nonline_mode; //! channel bias args.emplace_back( param, TensorShape{2, ic, h, w}, TensorShape{oc, ic, kernel, kernel}, TensorShape{1, oc, 1, 1}); }; for (size_t kernel : {2, 3, 5, 7}) for (size_t ic : {1, 8, 16, 32}) for (size_t oc : {1, 8, 16, 32}) for (size_t p : {1}) for (NonlineMode nonline_mode : {NonlineMode::RELU}) { run(oc, ic, 56, 56, kernel, p, nonline_mode); run(oc, ic, 128, 128, kernel, p, nonline_mode); run(oc, ic, 256, 256, kernel, p, nonline_mode); } constexpr size_t RUN = 50; Benchmarker benchmark0(handle()); benchmark0.set_dtype(0, dtype::QuantizedS8(2.5f)) .set_dtype(1, dtype::QuantizedS8(2.5f)) .set_dtype(2, dtype::QuantizedS32(6.25f)) .set_dtype(4, dtype::QuantizedS8(60.25f)); benchmark0.set_display(false); benchmark0.set_times(RUN); benchmark0.set_before_exec_callback( conv_bias::ConvBiasAlgoChecker("ARMDOTS8STRD1")); Benchmarker benchmark1(handle()); benchmark1.set_dtype(0, dtype::QuantizedS8(2.5f)) .set_dtype(1, dtype::QuantizedS8(2.5f)) .set_dtype(2, dtype::QuantizedS32(6.25f)) .set_dtype(4, dtype::QuantizedS8(60.25f)); benchmark1.set_display(false); benchmark1.set_times(RUN); for (auto&& arg : args) { TensorLayout dst_layout; auto opr = handle()->create_operator(); opr->param() = arg.param; opr->deduce_layout( {arg.src, dtype::Int8()}, {arg.filter, dtype::Int8()}, {arg.bias, dtype::Int32()}, {}, dst_layout); //! dst.nr_elems * IC * FH * FW * 2 float computations = dst_layout.total_nr_elems() * arg.filter[1] * arg.filter[2] * arg.filter[3] * 2.0 / (1024 * 1024 * 1024) * 1e3; auto used0 = benchmark0.set_param(arg.param).exec( {arg.src, arg.filter, arg.bias, {}, {}}) / RUN; auto used1 = benchmark1.set_param(arg.param).exec( {arg.src, arg.filter, arg.bias, {}, {}}) / RUN; printf("%s %s: conv_bias: %f ms %f Gflops conv_elem: %f ms %f GFlops " "speedup: %f\n", arg.src.to_string().c_str(), arg.filter.to_string().c_str(), used0, computations / used0, used1, computations / used1, used1 / used0); } } TEST_F(ARM_COMMON, BENCHMARK_CONV_BIAS_INT8_STRIDE2_WITHDOTPROD) { // have to remove preferred restrict in usable func before run the benchmark using namespace conv_bias; std::vector args; auto run = [&](size_t oc, size_t ic, size_t w, size_t h, size_t kernel, size_t p, NonlineMode nonline_mode) { if (w + 2 * p < kernel || h + 2 * p < kernel) return; param::ConvBias param; param.stride_h = 2; param.stride_w = 2; param.pad_h = p; param.pad_w = p; param.nonlineMode = nonline_mode; //! channel bias args.emplace_back( param, TensorShape{2, ic, h, w}, TensorShape{oc, ic, kernel, kernel}, TensorShape{1, oc, 1, 1}); }; for (size_t kernel : {2, 3, 5, 7}) for (size_t ic : {1, 8, 16, 32}) for (size_t oc : {1, 8, 16, 32}) for (size_t p : {1}) for (NonlineMode nonline_mode : {NonlineMode::RELU}) { run(oc, ic, 56, 56, kernel, p, nonline_mode); run(oc, ic, 128, 128, kernel, p, nonline_mode); run(oc, ic, 256, 256, kernel, p, nonline_mode); } constexpr size_t RUN = 50; Benchmarker benchmark0(handle()); benchmark0.set_dtype(0, dtype::QuantizedS8(2.5f)) .set_dtype(1, dtype::QuantizedS8(2.5f)) .set_dtype(2, dtype::QuantizedS32(6.25f)) .set_dtype(4, dtype::QuantizedS8(60.25f)); benchmark0.set_display(false); benchmark0.set_times(RUN); benchmark0.set_before_exec_callback( conv_bias::ConvBiasAlgoChecker("ARMDOTS8STRD2")); Benchmarker benchmark1(handle()); benchmark1.set_dtype(0, dtype::QuantizedS8(2.5f)) .set_dtype(1, dtype::QuantizedS8(2.5f)) .set_dtype(2, dtype::QuantizedS32(6.25f)) .set_dtype(4, dtype::QuantizedS8(60.25f)); benchmark1.set_display(false); benchmark1.set_times(RUN); for (auto&& arg : args) { TensorLayout dst_layout; auto opr = handle()->create_operator(); opr->param() = arg.param; opr->deduce_layout( {arg.src, dtype::Int8()}, {arg.filter, dtype::Int8()}, {arg.bias, dtype::Int32()}, {}, dst_layout); //! dst.nr_elems * IC * FH * FW * 2 float computations = dst_layout.total_nr_elems() * arg.filter[1] * arg.filter[2] * arg.filter[3] * 2.0 / (1024 * 1024 * 1024) * 1e3; auto used0 = benchmark0.set_param(arg.param).exec( {arg.src, arg.filter, arg.bias, {}, {}}) / RUN; auto used1 = benchmark1.set_param(arg.param).exec( {arg.src, arg.filter, arg.bias, {}, {}}) / RUN; printf("%s %s: conv_bias: %f ms %f Gflops conv_elem: %f ms %f GFlops " "speedup: %f\n", arg.src.to_string().c_str(), arg.filter.to_string().c_str(), used0, computations / used0, used1, computations / used1, used1 / used0); } } TEST_F(ARM_COMMON, BENCHMARK_CONV_BIAS_QUINT8_STRIDE1_WITHDOTPROD) { // have to remove preferred restrict in usable func before run the benchmark using namespace conv_bias; std::vector args; auto run = [&](size_t oc, size_t ic, size_t w, size_t h, size_t kernel, size_t p, NonlineMode nonline_mode) { if (w + 2 * p < kernel || h + 2 * p < kernel) return; param::ConvBias param; param.stride_h = 1; param.stride_w = 1; param.pad_h = p; param.pad_w = p; param.nonlineMode = nonline_mode; //! channel bias args.emplace_back( param, TensorShape{2, ic, h, w}, TensorShape{oc, ic, kernel, kernel}, TensorShape{1, oc, 1, 1}); }; // clang-format off for (size_t kernel : {2, 3, 5, 7}) for (size_t ic : {1, 8, 16, 32}) for (size_t oc : {1, 8, 16, 32}) for (size_t p : {1}) for (NonlineMode nonline_mode : {NonlineMode::RELU}) { run(oc, ic, 56, 56, kernel, p, nonline_mode); run(oc, ic, 128, 128, kernel, p, nonline_mode); run(oc, ic, 256, 256, kernel, p, nonline_mode); } // clang-format on constexpr size_t RUN = 50; Benchmarker benchmark0(handle()); benchmark0.set_dtype(0, dtype::Quantized8Asymm(0.2f, static_cast(100))) .set_dtype(1, dtype::Quantized8Asymm(0.2f, static_cast(120))) .set_dtype(2, dtype::QuantizedS32(0.04f)) .set_dtype(4, dtype::Quantized8Asymm(1.4f, static_cast(110))); benchmark0.set_display(false); benchmark0.set_times(RUN); benchmark0.set_before_exec_callback( conv_bias::ConvBiasAlgoChecker("ARMDOTU8STRD1")); Benchmarker benchmark1(handle()); benchmark1.set_dtype(0, dtype::Quantized8Asymm(0.2f, static_cast(100))) .set_dtype(1, dtype::Quantized8Asymm(0.2f, static_cast(120))) .set_dtype(2, dtype::QuantizedS32(0.04f)) .set_dtype(4, dtype::Quantized8Asymm(1.4f, static_cast(110))); benchmark1.set_display(false); benchmark1.set_times(RUN); for (auto&& arg : args) { TensorLayout dst_layout; auto opr = handle()->create_operator(); opr->param() = arg.param; opr->deduce_layout( {arg.src, dtype::Int8()}, {arg.filter, dtype::Int8()}, {arg.bias, dtype::Int32()}, {}, dst_layout); //! dst.nr_elems * IC * FH * FW * 2 float computations = dst_layout.total_nr_elems() * arg.filter[1] * arg.filter[2] * arg.filter[3] * 2.0 / (1024 * 1024 * 1024) * 1e3; auto used0 = benchmark0.set_param(arg.param).exec( {arg.src, arg.filter, arg.bias, {}, {}}) / RUN; auto used1 = benchmark1.set_param(arg.param).exec( {arg.src, arg.filter, arg.bias, {}, {}}) / RUN; printf("%s %s: conv_bias: %f ms %f Gflops conv_elem: %f ms %f GFlops " "speedup: %f\n", arg.src.to_string().c_str(), arg.filter.to_string().c_str(), used0, computations / used0, used1, computations / used1, used1 / used0); } } TEST_F(ARM_COMMON, BENCHMARK_CONV_BIAS_QUINT8_STRIDE2_WITHDOTPROD) { // have to remove preferred restrict in usable func before run the benchmark using namespace conv_bias; std::vector args; auto run = [&](size_t oc, size_t ic, size_t w, size_t h, size_t kernel, size_t p, NonlineMode nonline_mode) { if (w + 2 * p < kernel || h + 2 * p < kernel) return; param::ConvBias param; param.stride_h = 2; param.stride_w = 2; param.pad_h = p; param.pad_w = p; param.nonlineMode = nonline_mode; //! channel bias args.emplace_back( param, TensorShape{2, ic, h, w}, TensorShape{oc, ic, kernel, kernel}, TensorShape{1, oc, 1, 1}); }; // clang-format off for (size_t kernel : {2, 3, 5, 7}) for (size_t ic : {1, 8, 16, 32}) for (size_t oc : {1, 8, 16, 32}) for (size_t p : {1}) for (NonlineMode nonline_mode : {NonlineMode::RELU}) { run(oc, ic, 56, 56, kernel, p, nonline_mode); run(oc, ic, 128, 128, kernel, p, nonline_mode); run(oc, ic, 256, 256, kernel, p, nonline_mode); } // clang-format on constexpr size_t RUN = 50; Benchmarker benchmark0(handle()); benchmark0.set_dtype(0, dtype::Quantized8Asymm(0.2f, static_cast(100))) .set_dtype(1, dtype::Quantized8Asymm(0.2f, static_cast(120))) .set_dtype(2, dtype::QuantizedS32(0.04f)) .set_dtype(4, dtype::Quantized8Asymm(1.4f, static_cast(110))); benchmark0.set_display(false); benchmark0.set_times(RUN); benchmark0.set_before_exec_callback( conv_bias::ConvBiasAlgoChecker("ARMDOTU8STRD2")); Benchmarker benchmark1(handle()); benchmark1.set_dtype(0, dtype::Quantized8Asymm(0.2f, static_cast(100))) .set_dtype(1, dtype::Quantized8Asymm(0.2f, static_cast(120))) .set_dtype(2, dtype::QuantizedS32(0.04f)) .set_dtype(4, dtype::Quantized8Asymm(1.4f, static_cast(110))); benchmark1.set_display(false); benchmark1.set_times(RUN); for (auto&& arg : args) { TensorLayout dst_layout; auto opr = handle()->create_operator(); opr->param() = arg.param; opr->deduce_layout( {arg.src, dtype::Int8()}, {arg.filter, dtype::Int8()}, {arg.bias, dtype::Int32()}, {}, dst_layout); //! dst.nr_elems * IC * FH * FW * 2 float computations = dst_layout.total_nr_elems() * arg.filter[1] * arg.filter[2] * arg.filter[3] * 2.0 / (1024 * 1024 * 1024) * 1e3; auto used0 = benchmark0.set_param(arg.param).exec( {arg.src, arg.filter, arg.bias, {}, {}}) / RUN; auto used1 = benchmark1.set_param(arg.param).exec( {arg.src, arg.filter, arg.bias, {}, {}}) / RUN; printf("%s %s: conv_bias: %f ms %f Gflops conv_elem: %f ms %f GFlops " "speedup: %f\n", arg.src.to_string().c_str(), arg.filter.to_string().c_str(), used0, computations / used0, used1, computations / used1, used1 / used0); } } TEST_F(ARM_COMMON, BENCHMARK_CONV_BIAS_INT8_STRIDE1_WITHDOTPROD_NCHW44_DOT) { using namespace conv_bias; std::vector args; auto run = [&](size_t oc, size_t ic, size_t w, size_t h, size_t kernel, size_t p, size_t stride, NonlineMode nonline_mode) { if (w + 2 * p < kernel || h + 2 * p < kernel) return; param::ConvBias param; param.stride_h = stride; param.stride_w = stride; param.pad_h = p; param.pad_w = p; param.nonlineMode = nonline_mode; param.format = param::ConvBias::Format::NCHW44_DOT; //! channel bias args.emplace_back( param, TensorShape{1, ic / 4, h, w, 4}, TensorShape{oc / 4, ic / 4, kernel, kernel, 4, 4}, TensorShape{1, oc / 4, 1, 1, 4}); }; for (size_t stride : {1, 2}) for (size_t kernel : {2, 3, 5, 7}) for (size_t oc : {64}) for (NonlineMode nonline_mode : {NonlineMode::IDENTITY}) { run(oc, oc, 56, 56, kernel, kernel / 2, stride, nonline_mode); } constexpr size_t RUN = 50; Benchmarker benchmark0(handle()); benchmark0.set_dtype(0, dtype::QuantizedS8(2.5f)) .set_dtype(1, dtype::QuantizedS8(2.5f)) .set_dtype(2, dtype::QuantizedS32(6.25f)) .set_dtype(4, dtype::QuantizedS8(60.25f)); benchmark0.set_display(false); benchmark0.set_times(RUN); benchmark0.set_before_exec_callback( conv_bias::ConvBiasAlgoChecker("ARMDOTS8DIRECT_NCHW44")); Benchmarker benchmark1(handle()); benchmark1.set_dtype(0, dtype::QuantizedS8(2.5f)) .set_dtype(1, dtype::QuantizedS8(2.5f)) .set_dtype(2, dtype::QuantizedS32(6.25f)) .set_dtype(4, dtype::QuantizedS8(60.25f)); benchmark1.set_display(false); benchmark1.set_times(RUN); for (auto&& arg : args) { TensorLayout dst_layout; auto opr = handle()->create_operator(); opr->param() = arg.param; opr->deduce_layout( {arg.src, dtype::Int8()}, {arg.filter, dtype::Int8()}, {arg.bias, dtype::Int32()}, {}, dst_layout); //! dst.nr_elems * IC * FH * FW * 2 float computations = dst_layout.total_nr_elems() * arg.filter[1] * arg.filter[2] * arg.filter[3] * 8.0 / (1024 * 1024 * 1024) * 1e3; auto used0 = benchmark0.set_param(arg.param).exec( {arg.src, arg.filter, arg.bias, {}, {}}) / RUN; auto used1 = benchmark1.set_param(arg.param).exec( {arg.src, arg.filter, arg.bias, {}, {}}) / RUN; printf("%s %s: Direct use: %f ms %f Gflops normal: %f ms %f GFlops " "speedup: %f\n", arg.src.to_string().c_str(), arg.filter.to_string().c_str(), used0, computations / used0, used1, computations / used1, used1 / used0); } } #endif #endif /*====================== BENCHMARK CONV1X1 ===========================*/ #if MEGDNN_WITH_BENCHMARK namespace { std::vector get_conv_bias_1x1_benchmark_args(size_t pack_size = 1) { using namespace conv_bias; std::vector args; param::ConvBias param; param.stride_h = 1; param.stride_w = 1; param.pad_h = 0; param.pad_w = 0; param.nonlineMode = param::ConvBias::NonlineMode::IDENTITY; auto bench_case = [&](size_t OC, size_t IC, size_t H, size_t W) { if (pack_size == 1) args.emplace_back( param, TensorShape{1, IC, H, W}, TensorShape{OC, IC, 1, 1}, TensorShape{}); else { if (pack_size == 4) param.format = param::ConvBias::Format::NCHW44; args.emplace_back( param, TensorShape{1, IC / pack_size, H, W, pack_size}, TensorShape{ OC / pack_size, IC / pack_size, 1, 1, pack_size, pack_size}, TensorShape{}); } }; //! MobileNetV1 bench_case(64, 32, 112, 112); bench_case(128, 64, 56, 56); bench_case(128, 128, 56, 56); bench_case(256, 128, 28, 28); bench_case(256, 256, 28, 28); bench_case(512, 256, 14, 14); bench_case(512, 512, 14, 14); bench_case(1024, 512, 7, 7); bench_case(1024, 1024, 7, 7); //! MobileNetV2 bench_case(16, 32, 112, 112); bench_case(96, 16, 112, 112); bench_case(144, 24, 56, 56); bench_case(192, 32, 28, 28); bench_case(384, 64, 28, 28); bench_case(576, 96, 14, 14); bench_case(960, 160, 7, 7); bench_case(320, 960, 7, 7); bench_case(1280, 320, 7, 7); //! MobileNetV3-Large bench_case(64, 16, 112, 112); bench_case(72, 24, 56, 56); bench_case(120, 40, 28, 28); bench_case(240, 40, 28, 28); bench_case(200, 80, 14, 14); bench_case(184, 80, 14, 14); bench_case(480, 80, 14, 14); bench_case(672, 112, 14, 14); //! MobileNetV3-Small bench_case(72, 16, 56, 56); bench_case(88, 24, 28, 28); bench_case(96, 24, 28, 28); bench_case(240, 40, 14, 14); bench_case(120, 40, 14, 14); bench_case(144, 48, 14, 14); bench_case(288, 48, 14, 14); bench_case(576, 96, 7, 7); //! resnet50 bench_case(256, 64, 56, 56); bench_case(512, 128, 28, 28); bench_case(1024, 256, 14, 14); bench_case(2048, 512, 7, 7); return args; } void benchmark_conv1x1( const char* matmul_algo_name, Handle* handle, DType stype, DType matmul_dtype, DType bias_type, DType conv_dtype, bool is_mk4 = false) { using namespace conv_bias; int pack_size = is_mk4 ? 4 : 1; std::vector conv_bias_1x1_args = get_conv_bias_1x1_benchmark_args(pack_size); constexpr size_t RUNS = 50; param::MatrixMul param; param.transposeA = false; param.transposeB = false; if (is_mk4) { param.format = MatrixMul::Param::Format::MK4; } Benchmarker benchmark_matmul(handle); benchmark_matmul.set_before_exec_callback(AlgoChecker(matmul_algo_name)); benchmark_matmul.set_times(RUNS) .set_dtype(0, stype) .set_dtype(1, stype) .set_dtype(2, matmul_dtype) .set_param(param) .set_display(false); std::string conv1x1_algo_name = ssprintf("CONV1x1:%s:24", matmul_algo_name); Benchmarker benchmark_conv1x1(handle); benchmark_conv1x1.set_before_exec_callback( conv_bias::ConvBiasAlgoChecker(conv1x1_algo_name.c_str())); benchmark_conv1x1.set_times(RUNS) .set_dtype(0, stype) .set_dtype(1, stype) .set_dtype(2, bias_type) .set_dtype(4, conv_dtype) .set_display(false); for (auto&& arg : conv_bias_1x1_args) { size_t IC = arg.src[1]; size_t OH = arg.src[2]; size_t OW = arg.src[3]; size_t OC = arg.filter[0]; size_t M = OC * pack_size; size_t K = IC * pack_size; size_t N = OH * OW; float computations = M * N * K * 2.f / (1024 * 1024 * 1024) * 1e3; TensorShape A, B; A = TensorShape{M, K}; B = TensorShape{K, N}; if (is_mk4) { A = TensorShape{M / 4, K / 4, 4, 4}; B = TensorShape{K / 4, N, 4}; } auto conv1x1_used = benchmark_conv1x1.set_param(arg.param).exec( {arg.src, arg.filter, arg.bias, {}, {}}) / RUNS; auto matmul_used = benchmark_matmul.exec({A, B, {}}) / RUNS; printf("%s %s:\n matmul: %f ms %f Gflops\nconv1x1: %f ms %f GFlops " "speedup: " "%f\n", arg.src.to_string().c_str(), arg.filter.to_string().c_str(), matmul_used, computations / matmul_used, conv1x1_used, computations / conv1x1_used, matmul_used / conv1x1_used); } } } // namespace TEST_F(ARM_COMMON, BENCHMARK_CONV_BIAS_CONV1X1_S1_F32) { #if MEGDNN_AARCH64 benchmark_conv1x1( "AARCH64_F32K8X12X1", handle(), dtype::Float32{}, dtype::Float32{}, dtype::Float32{}, dtype::Float32{}); #else benchmark_conv1x1( "ARMV7_F32", handle(), dtype::Float32{}, dtype::Float32{}, dtype::Float32{}, dtype::Float32{}); #endif } #if __ARM_FEATURE_FP16_VECTOR_ARITHMETIC TEST_F(ARM_COMMON, BENCHMARK_CONV_BIAS_CONV1X1_S1_F16) { #if MEGDNN_AARCH64 benchmark_conv1x1( "AARCH64_F16_K8X24X1", handle(), dtype::Float16{}, dtype::Float16{}, dtype::Float16{}, dtype::Float16{}); #else benchmark_conv1x1( "AARCH32_F16_K4X16X1", handle(), dtype::Float16{}, dtype::Float16{}, dtype::Float16{}, dtype::Float16{}); #endif } #endif TEST_F(ARM_COMMON, BENCHMARK_CONV_BIAS_CONV1X1_S1_QUANTIZEDSYM) { dtype::QuantizedS8 stype(2.5f); dtype::QuantizedS32 dtype(6.25f); #if MEGDNN_AARCH64 #if MGB_ENBALE_DOT benchmark_conv1x1( "AARCH64_INT8X8X32_K8X12X4_DOTPROD", handle(), stype, dtype, dtype, dtype); #else benchmark_conv1x1("AARCH64_INT8X8X32_K8X8X8", handle(), stype, dtype, dtype, dtype); benchmark_conv1x1( "AARCH64_INT8X8X32_K4X4X16", handle(), stype, dtype, dtype, dtype); #endif #elif MEGDNN_ARMV7 benchmark_conv1x1("ARMV7_INT8X8X32_K4X8X8", handle(), stype, dtype, dtype, dtype); #endif } TEST_F(ARM_COMMON, BENCHMARK_CONV_BIAS_CONV1X1_S1_QUANTIZEDASYM) { dtype::Quantized8Asymm stype(1.2f, (uint8_t)125); dtype::QuantizedS32 dtype(1.2 * 1.2); #if MEGDNN_AARCH64 #if MGB_ENBALE_DOT benchmark_conv1x1( "AARCH64_QUINT8_K8X8X4_DOTPROD", handle(), stype, dtype, dtype, dtype); #else benchmark_conv1x1("AARCH64_QUINT8_K8X8X8", handle(), stype, dtype, dtype, dtype); #endif #elif MEGDNN_ARMV7 benchmark_conv1x1("ARMV7_QUINT8_K4X8X8", handle(), stype, dtype, dtype, dtype); #endif } TEST_F(ARM_COMMON, BENCHMARK_CONV_BIAS_CONV1X1_S1_INT8x8x16) { #if MEGDNN_AARCH64 benchmark_conv1x1( "AARCH64_INT8X8X16_K8X8X8", handle(), dtype::Int8{}, dtype::Int16{}, dtype::Int16{}, dtype::Int16{}); benchmark_conv1x1( "AARCH64_INT8X8X16_K4X4X16", handle(), dtype::Int8{}, dtype::Int16{}, dtype::Int16{}, dtype::Int16{}); #elif MEGDNN_ARMV7 benchmark_conv1x1( "ARMV7_INT8X8X16_K4X8X8", handle(), dtype::Int8{}, dtype::Int16{}, dtype::Int16{}, dtype::Int16{}); benchmark_conv1x1( "ARMV7_INT8X8X16_K4X2X16", handle(), dtype::Int8{}, dtype::Int16{}, dtype::Int16{}, dtype::Int16{}); benchmark_conv1x1( "ARMV7_INT8X8X16_MK4_K8X8X4", handle(), dtype::Int8{}, dtype::Int16{}, dtype::Int16{}, dtype::Int16{}, true); #endif } TEST_F(ARM_COMMON, BENCHMARK_CONV_BIAS_CONV1X1_GEMV_FP32) { using namespace conv_bias; std::vector args; param::ConvBias conv_param; conv_param.stride_h = 1; conv_param.stride_w = 1; conv_param.pad_h = 0; conv_param.pad_w = 0; conv_param.nonlineMode = param::ConvBias::NonlineMode::IDENTITY; auto run = [&](size_t M, size_t K) { args.emplace_back( conv_param, TensorShape{1, K, 1, 1}, TensorShape{M, K, 1, 1}, TensorShape{}); }; for (size_t M : {4, 64, 1024, 4096}) for (size_t K : {128, 256, 1024, 4096}) run(M, K); constexpr size_t RUNS = 50; param::MatrixMul param; param.transposeA = false; param.transposeB = false; Benchmarker benchmark_matmul(handle()); benchmark_matmul.set_before_exec_callback( AlgoChecker("ARM_COMMON_F32_GEMV")); benchmark_matmul.set_times(RUNS) .set_dtype(0, dtype::Float32{}) .set_dtype(1, dtype::Float32{}) .set_dtype(2, dtype::Float32{}) .set_param(param) .set_display(false); Benchmarker benchmark_conv1x1(handle()); benchmark_conv1x1.set_before_exec_callback( conv_bias::ConvBiasAlgoChecker("CONV1x1_GEMV")); benchmark_conv1x1.set_times(RUNS) .set_dtype(0, dtype::Float32{}) .set_dtype(1, dtype::Float32{}) .set_dtype(2, dtype::Float32{}) .set_dtype(4, dtype::Float32{}) .set_display(false); std::cout << "warm up:\n"; for (int i = 0; i < 50; i++) { benchmark_matmul.exec({{1, 1024}, {1024, 512}, {}}); benchmark_matmul.set_display(true); } for (auto&& arg : args) { size_t IC = arg.src[1]; size_t OH = arg.src[2]; size_t OW = arg.src[3]; size_t OC = arg.filter[0]; size_t M = OC; size_t K = IC; size_t N = OH * OW; float computations = M * N * K * 2.f / (1024 * 1024 * 1024) * 1e3; TensorShape A, B; A = TensorShape{M, K}; B = TensorShape{K, N}; auto conv1x1_used = benchmark_conv1x1.set_param(arg.param).exec( {arg.src, arg.filter, arg.bias, {}, {}}) / RUNS; auto matmul_used = benchmark_matmul.exec({A, B, {}}) / RUNS; printf("%s %s:\n gemv: %f ms %f Gflops\nconv1x1: %f ms %f GFlops " "speedup: " "%f\n", arg.src.to_string().c_str(), arg.filter.to_string().c_str(), matmul_used, computations / matmul_used, conv1x1_used, computations / conv1x1_used, matmul_used / conv1x1_used); } } //! enable none dot algo now TEST_F(ARM_COMMON, BENCHMARK_CONV_BIAS_1X1_S1_NCHW_VS_NCHW44_INT8x8x32) { std::vector conv_bias_1x1_args_nchw44 = get_conv_bias_1x1_benchmark_args(4); std::vector conv_bias_1x1_args_nchw = get_conv_bias_1x1_benchmark_args(1); constexpr size_t RUNS = 50; Benchmarker benchmark_conv1x1_nchw44(handle()); benchmark_conv1x1_nchw44.set_before_exec_callback( conv_bias::ConvBiasAlgoChecker( "CONV1x1:AARCH64_INT8X8X32_MK4_4X4X16:24")); benchmark_conv1x1_nchw44.set_times(RUNS) .set_dtype(0, dtype::Int8()) .set_dtype(1, dtype::Int8()) .set_dtype(2, dtype::Int32()) .set_dtype(4, dtype::Int32()) .set_display(false); Benchmarker benchmark_conv1x1_nchw(handle()); benchmark_conv1x1_nchw.set_before_exec_callback( conv_bias::ConvBiasAlgoChecker( "CONV1x1:AARCH64_INT8X8X32_K4X4X16:24")); benchmark_conv1x1_nchw.set_times(RUNS) .set_dtype(0, dtype::Int8()) .set_dtype(1, dtype::Int8()) .set_dtype(2, dtype::Int32()) .set_dtype(4, dtype::Int32()) .set_display(false); for (size_t i = 0; i < conv_bias_1x1_args_nchw44.size(); ++i) { auto&& arg_nchw = conv_bias_1x1_args_nchw[i]; auto&& arg_nchw44 = conv_bias_1x1_args_nchw44[i]; size_t IC = arg_nchw.src[1]; size_t OH = arg_nchw.src[2]; size_t OW = arg_nchw.src[3]; size_t OC = arg_nchw.filter[0]; size_t M = OC; size_t K = IC; size_t N = OH * OW; float computations = M * N * K * 2.f / (1024 * 1024 * 1024) * 1e3; auto conv1x1_nchw = benchmark_conv1x1_nchw.set_param(arg_nchw.param) .exec({arg_nchw.src, arg_nchw.filter, arg_nchw.bias, {}, {}}) / RUNS; auto conv1x1_nchw44 = benchmark_conv1x1_nchw44.set_param(arg_nchw44.param) .exec({arg_nchw44.src, arg_nchw44.filter, arg_nchw44.bias, {}, {}}) / RUNS; printf("%s %s:\n conv_1x1_nchw: %f ms %f Gflops\nconv1x1_nchw44: %f ms " "%f GFlops " "speedup: " "%f\n", arg_nchw.src.to_string().c_str(), arg_nchw.filter.to_string().c_str(), conv1x1_nchw, computations / conv1x1_nchw, conv1x1_nchw44, computations / conv1x1_nchw44, conv1x1_nchw / conv1x1_nchw44); } } TEST_F(ARM_COMMON, BENCHMARK_CONV_BIAS_WINOGRAD_VS_IM2COL_INT8) { auto&& args = get_winograd_benchmark_args(3, 8); using namespace conv_bias; constexpr size_t RUN = 10; Benchmarker benchmark_im2col(handle()); benchmark_im2col.set_display(false); benchmark_im2col.set_times(RUN); benchmark_im2col.set_dtype(0, dtype::QuantizedS8(2.5f)) .set_dtype(1, dtype::QuantizedS8(2.5f)) .set_dtype(2, dtype::QuantizedS32(6.25f)) .set_dtype(4, dtype::QuantizedS8(60.25f)); Benchmarker benchmark_winograd(handle()); benchmark_winograd.set_display(false); benchmark_winograd.set_times(RUN); benchmark_winograd.set_dtype(0, dtype::QuantizedS8(2.5f)) .set_dtype(1, dtype::QuantizedS8(2.5f)) .set_dtype(2, dtype::QuantizedS32(6.25f)) .set_dtype(4, dtype::QuantizedS8(60.25f)); for (auto&& arg : args) { TensorLayout dst_layout; auto opr = handle()->create_operator(); opr->param() = arg.param; opr->deduce_layout( {arg.src, dtype::Float32()}, {arg.filter, dtype::Float32()}, {arg.bias, dtype::Float32()}, {}, dst_layout); //! dst.nr_elems * IC * FH * FW * 2 float computations = dst_layout.total_nr_elems() * arg.filter[1] * arg.filter[2] * arg.filter[3] * 2.0 / (1024 * 1024 * 1024) * 1e3; benchmark_im2col.set_param(arg.param); auto im2col_used = algo_benchmark( benchmark_im2col, {arg.src, arg.filter, {}, {}, {}}, "IM2COLMATMUL:AARCH64_INT8X8X32_K4X4X16") / RUN; benchmark_winograd.set_param(arg.param); auto winograd_used = algo_benchmark( benchmark_winograd, {arg.src, arg.filter, {}, {}, {}}, "WINOGRAD:AARCH64_INT16X16X32_MK8_8X8:8:2") / RUN; printf("%s %s: im2col: %f ms %f Gflops winograd: %f ms %f GFlops " "speedup: " "%f\n", arg.src.to_string().c_str(), arg.filter.to_string().c_str(), im2col_used, computations / im2col_used, winograd_used, computations / winograd_used, im2col_used / winograd_used); } } #endif // vim: syntax=cpp.doxygen