/** * \file dnn/test/armv7/matrix_mul.cpp * MegEngine is Licensed under the Apache License, Version 2.0 (the "License") * * Copyright (c) 2014-2021 Megvii Inc. All rights reserved. * * Unless required by applicable law or agreed to in writing, * software distributed under the License is distributed on an * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or * implied. */ #include "test/common/matrix_mul.h" #include "test/armv7/fixture.h" #include "test/common/benchmarker.h" #include "test/common/checker.h" #include "test/common/rng.h" using namespace megdnn; using namespace test; TEST_F(ARMV7, MATRIX_MUL) { matrix_mul::check_matrix_mul( dtype::Float32{}, dtype::Float32{}, dtype::Float32{}, handle(), "ARMV7_F32"); } TEST_F(ARMV7, MATRIX_MUL_MK4) { matrix_mul::check_matrix_mul( dtype::Float32{}, dtype::Float32{}, dtype::Float32{}, handle(), "ARMV7_F32_MK4_4x8", param::MatrixMul::Format::MK4, 1); } TEST_F(ARMV7, MATRIX_MUL_PACK_MK4) { matrix_mul::check_matrix_mul( dtype::Float32{}, dtype::Float32{}, dtype::Float32{}, handle(), "ARMV7_F32_MK4_PACK_4X12", param::MatrixMul::Format::MK4, 1); } TEST_F(ARMV7, MATRIX_MUL_MK4_INT8) { std::vector args; for (size_t m : {1, 2, 3, 4, 5, 7, 10, 11}) for (size_t n : {1, 2, 3, 4, 5, 8, 16, 24, 25, 32}) for (size_t k : {1, 2, 3, 4, 5, 6, 7, 8, 16, 32, 33, 34}) args.emplace_back(m, n, k, 0); matrix_mul::check_matrix_mul( dtype::Int8{}, dtype::Int8{}, dtype::Int32{}, handle(), "ARMV7_INT8X8X32_MK4_4X2X16", param::MatrixMul::Format::MK4, 1, 1e-3, std::move(args)); } TEST_F(ARMV7, MATRIX_MUL_INT8x8x16_K4x8x8) { matrix_mul::check_matrix_mul( dtype::Int8{}, dtype::Int8{}, dtype::Int16{}, handle(), "ARMV7_INT8X8X16_K4X8X8"); } TEST_F(ARMV7, MATRIX_MUL_INT8x8x16_K8x8x4) { matrix_mul::check_matrix_mul( dtype::Int8{}, dtype::Int8{}, dtype::Int16{}, handle(), "ARMV7_INT8X8X16_K8X8X4"); } TEST_F(ARMV7, MATRIX_MUL_INT8x8x16_MK4_K8x8x4) { matrix_mul::check_matrix_mul( dtype::Int8{}, dtype::Int8{}, dtype::Int16{}, handle(), "ARMV7_INT8X8X16_MK4_K8X8X4", param::MatrixMul::Format::MK4, 1); } TEST_F(ARMV7, MATRIX_MUL_INT16x16x32) { matrix_mul::check_matrix_mul( dtype::Int16{}, dtype::Int16{}, dtype::Int32{}, handle(), "ARMV7_INT16X16X32_K12X4X1"); } TEST_F(ARMV7, MATRIX_MUL_INT16x16x32_MK8) { matrix_mul::check_matrix_mul( dtype::Int16{}, dtype::Int16{}, dtype::Int32{}, handle(), "ARMV7_INT16X16X32_MK8_4X8", param::MatrixMul::Format::MK8, 1); } #if __ARM_FEATURE_FP16_VECTOR_ARITHMETIC TEST_F(ARMV7, MATRIX_MUL_FP16) { matrix_mul::check_matrix_mul( dtype::Float16{}, dtype::Float16{}, dtype::Float16{}, handle(), "AARCH32_F16_K4X16X1"); } TEST_F(ARMV7, MATRIX_MUL_F16_MK8) { matrix_mul::check_matrix_mul( dtype::Float16{}, dtype::Float16{}, dtype::Float16{}, handle(), "AARCH32_F16_MK8_4X8", param::MatrixMul::Format::MK8, 1); } #endif #if MGB_ENABLE_DOT TEST_F(ARMV7, MATRIX_MUL_SDOT) { matrix_mul::check_matrix_mul( dtype::Int8(), dtype::Int8(), dtype::Int32(), handle(), "AARCH32_INT8_K6X8X4"); } TEST_F(ARMV7, MATRIX_MUL_UDOT) { matrix_mul::check_matrix_mul( dtype::Quantized8Asymm(4.0f, static_cast(10)), dtype::Quantized8Asymm(3.0f, static_cast(54)), dtype::QuantizedS32(12.0f), handle(), "AARCH32_QUINT8_K4X8X4"); } TEST_F(ARMV7, MATRIX_MUL_MK4_DOT_INT8) { std::vector args; for (size_t m : {1, 2, 3, 4, 5, 7, 10, 11}) for (size_t n : {1, 2, 3, 4, 5, 8, 16, 24, 25, 32}) for (size_t k : {1, 2, 3, 4, 5, 6, 7, 8, 16, 32, 33, 34}) args.emplace_back(m, n, k, 0); matrix_mul::check_matrix_mul( dtype::Int8{}, dtype::Int8{}, dtype::Int32{}, handle(), "AARCH32_INT8_MK4_8X4X4_DOTPROD", param::MatrixMul::Format::MK4_DOT, 1, 1e-3, std::move(args)); } #endif #if MEGDNN_WITH_BENCHMARK namespace { void run_8x8x16_benchmark( const char* algo, Handle* handle, MatrixMul::Param::Format format = MatrixMul::Param::Format::DEFAULT) { constexpr size_t RUNS = 50; param::MatrixMul param; Benchmarker benchmarker_int(handle); Benchmarker benchmarker_int_kern_4x2x16(handle); benchmarker_int.set_before_exec_callback( AlgoChecker("ARM_COMMON_INT8X8X16")); benchmarker_int.set_times(RUNS) .set_dtype(0, dtype::Int8{}) .set_dtype(1, dtype::Int8{}) .set_dtype(2, dtype::Int16{}) .set_param(param) .set_display(false); param::MatrixMul target_param; target_param.format = format; benchmarker_int_kern_4x2x16.set_before_exec_callback(AlgoChecker(algo)); benchmarker_int_kern_4x2x16.set_times(RUNS) .set_dtype(0, dtype::Int8{}) .set_dtype(1, dtype::Int8{}) .set_dtype(2, dtype::Int16{}) .set_param(target_param) .set_display(false); Benchmarker benchmarker_float(handle); benchmarker_float.set_display(false).set_times(RUNS); auto run = [&](size_t M, size_t N, size_t K) { auto int_used = benchmarker_int.exec({{M, K}, {K, N}, {}}) / RUNS; auto int_kern_used = 1e10; if (format == MatrixMul::Param::Format::MK4) { int_kern_used = benchmarker_int_kern_4x2x16.exec( {{M / 4, K / 4, 4, 4}, {K / 4, N, 4}, {}}) / RUNS; } else { int_kern_used = benchmarker_int_kern_4x2x16.exec({{M, K}, {K, N}, {}}) / RUNS; } auto float_used = benchmarker_float.exec({{M, K}, {K, N}, {}}) / RUNS; float computations = 2.f * M * K * N * 1e-6; printf("run: {%zu{M} %zu{K} %zu{N}} float: %f ms %f Gflops int: %f " "ms " "%f Gflops %s: %f ms %f Gflops " "speedup(%s/arm_common, %s/float): %f " "%f\n", M, K, N, float_used, computations / float_used, int_used, computations / int_used, algo, int_kern_used, computations / int_kern_used, algo, algo, int_used / int_kern_used, float_used / int_kern_used); }; run(256, 12 * 24, 256); run(256, 256, 256); //////////////////////// gemv ////////////////////////// for (size_t M : {8, 64, 112, 256}) { for (size_t K : {8, 64, 112, 256}) { run(M, 1, K); } } //////////////////////// gemm ////////////////////////// for (size_t M : {8, 64, 112, 256}) { for (size_t K : {8, 16, 32, 64, 112, 256}) { for (size_t N : {8, 64, 112, 256}) { run(M, N, K); } } } } void run_8x8x16_contrast( const char* algo0, const char* algo, Handle* handle, MatrixMul::Param::Format format = MatrixMul::Param::Format::DEFAULT) { constexpr size_t RUNS = 100; param::MatrixMul param; Benchmarker benchmarker_int(handle); Benchmarker benchmarker_int_kern_4x2x16(handle); benchmarker_int.set_before_exec_callback(AlgoChecker(algo0)); benchmarker_int.set_times(RUNS) .set_dtype(0, dtype::Int8{}) .set_dtype(1, dtype::Int8{}) .set_dtype(2, dtype::Int16{}) .set_param(param) .set_display(false); param::MatrixMul target_param; target_param.format = format; benchmarker_int_kern_4x2x16.set_before_exec_callback(AlgoChecker(algo)); benchmarker_int_kern_4x2x16.set_times(RUNS) .set_dtype(0, dtype::Int8{}) .set_dtype(1, dtype::Int8{}) .set_dtype(2, dtype::Int16{}) .set_param(target_param) .set_display(false); auto run = [&](size_t M, size_t N, size_t K) { auto int_used = benchmarker_int.exec({{M, K}, {K, N}, {}}) / RUNS; auto int_kern_used = 1e10; double computation = 2.0f * M * N * K * 1e-6; if (format == MatrixMul::Param::Format::MK4) { int_kern_used = benchmarker_int_kern_4x2x16.exec( {{M / 4, K / 4, 4, 4}, {K / 4, N, 4}, {}}) / RUNS; } else { int_kern_used = benchmarker_int_kern_4x2x16.exec({{M, K}, {K, N}, {}}) / RUNS; } printf(" %f(%f)\t %f(%f)\t %f\n", int_used, computation / int_used, int_kern_used, computation / int_kern_used, int_used / int_kern_used); }; printf("\nN\t K\t M\t %s ms(GFlops)\t %s ms(GFlops)\t SPEEDUP\n", algo0, algo); for (size_t M : {8}) { for (size_t K : {72}) { for (size_t N : {8, 16, 32, 64, 72, 128, 256, 512, 1024, 4096, 8192, 16384, 32768, 65536}) { printf("%zu\t %zu\t %zu\t", N, K, M); run(M, N, K); } } } printf("512\t 512\t 512\t"); run(512, 512, 512); } void run_16x16x32_benchmark(const char* algo, Handle* handle) { constexpr size_t RUNS = 50; param::MatrixMul param; Benchmarker benchmarker_int(handle); benchmarker_int.set_before_exec_callback( AlgoChecker("ARMV7_INT16X16X32_K12X4X1")); benchmarker_int.set_times(RUNS) .set_dtype(0, dtype::Int16{}) .set_dtype(1, dtype::Int16{}) .set_dtype(2, dtype::Int32{}) .set_param(param) .set_display(false); Benchmarker benchmarker_float(handle); benchmarker_float.set_display(false).set_times(RUNS); auto run = [&](size_t M, size_t N, size_t K) { auto int_used = benchmarker_int.exec({{M, K}, {K, N}, {}}) / RUNS; auto float_used = benchmarker_float.exec({{M, K}, {K, N}, {}}) / RUNS; float computations = 2.f * M * K * N * 1e-6; printf("run: {%zu{M} %zu{K} %zu{N}} float: %f ms %f Gflops \n" "int: %f ms %f Gflops %s: \n" "speedup(%s/arm_common, %s/float): %f\n", M, K, N, float_used, computations / float_used, int_used, computations / int_used, algo, algo, algo, float_used / int_used); }; run(256, 12 * 24, 256); //////////////////////// gemv ////////////////////////// for (size_t M : {8, 64, 112, 256}) { for (size_t K : {8, 64, 112, 256}) { run(M, 1, K); } } //////////////////////// gemm ////////////////////////// for (size_t M : {8, 64, 112, 256}) { for (size_t K : {8, 16, 32, 64, 112, 256}) { for (size_t N : {1, 2, 3, 4, 8, 64, 112, 113, 114, 115, 256, 257, 258, 259}) { run(M, N, K); } } } } #if MGB_ENABLE_DOT void run_8x8x32_benchmark(const char* algo, Handle* handle) { constexpr size_t RUNS = 50; param::MatrixMul param; Benchmarker benchmarker_int8(handle); benchmarker_int8.set_before_exec_callback(AlgoChecker(algo)); benchmarker_int8.set_times(RUNS) .set_dtype(0, dtype::Int8{}) .set_dtype(1, dtype::Int8{}) .set_dtype(2, dtype::Int32{}) .set_param(param) .set_display(false); Benchmarker benchmarker_float(handle); benchmarker_float.set_display(false).set_times(RUNS); auto run = [&](size_t M, size_t N, size_t K) { auto int_used = benchmarker_int8.exec({{M, K}, {K, N}, {}}) / RUNS; auto float_used = benchmarker_float.exec({{M, K}, {K, N}, {}}) / RUNS; float computations = 2.f * M * K * N * 1e-6; printf("run: {%zu{M} %zu{K} %zu{N}} float: %f ms %f Gflops \n" "int: %f ms %f Gflops %s: \n" "speedup(%s/arm_common, %s/float): %f\n", M, K, N, float_used, computations / float_used, int_used, computations / int_used, algo, algo, algo, float_used / int_used); }; run(256, 12 * 24, 256); //////////////////////// gemm ////////////////////////// for (size_t M : {8, 64, 112, 256}) { for (size_t K : {8, 16, 32, 64, 112, 256}) { for (size_t N : {113, 114, 115, 256, 1024}) { run(M, N, K); } } } } void run_8x8x32_quint_benchmark(Handle* handle) { constexpr size_t RUNS = 50; param::MatrixMul param; Benchmarker benchmarker_quint8_dot(handle); benchmarker_quint8_dot.set_before_exec_callback( AlgoChecker("AARCH32_QUINT8_K4X8X4")); benchmarker_quint8_dot.set_times(RUNS) .set_dtype(0, dtype::Quantized8Asymm(2.3f, static_cast(20))) .set_dtype(1, dtype::Quantized8Asymm(3.1f, static_cast(30))) .set_dtype(2, dtype::QuantizedS32(2.3f * 3.1f)) .set_param(param) .set_display(false); Benchmarker benchmarker_quint8(handle); benchmarker_quint8.set_before_exec_callback( AlgoChecker("ARMV7_QUINT8_K4X8X8")); benchmarker_quint8.set_times(RUNS) .set_dtype(0, dtype::Quantized8Asymm(2.3f, static_cast(20))) .set_dtype(1, dtype::Quantized8Asymm(3.1f, static_cast(30))) .set_dtype(2, dtype::QuantizedS32(2.3f * 3.1f)) .set_param(param) .set_display(false); auto run = [&](size_t M, size_t N, size_t K) { auto dot_used = benchmarker_quint8_dot.exec({{M, K}, {K, N}, {}}) / RUNS; auto normal_used = benchmarker_quint8.exec({{M, K}, {K, N}, {}}) / RUNS; float computations = 2.f * M * K * N * 1e-6; printf("run: {%zu{M} %zu{K} %zu{N}} dot: %f ms %f Gflops \n" "normal: %f ms %f Gflops.speedup: %f\n", M, K, N, dot_used, computations / dot_used, normal_used, computations / normal_used, normal_used / dot_used); }; run(256, 12 * 24, 256); //////////////////////// gemm ////////////////////////// for (size_t M : {8, 64, 112, 256}) { for (size_t K : {8, 16, 32, 64, 112, 256}) { for (size_t N : {113, 114, 115, 256, 1024}) { run(M, N, K); } } } } #endif } // namespace #if MGB_ENABLE_DOT TEST_F(ARMV7, BENCHMARK_MATRIX_MUL_INT8x8x32_K6x8x4) { run_8x8x32_benchmark("AARCH32_INT8_K6X8X4", handle()); } TEST_F(ARMV7, BENCHMARK_MATRIX_MUL_QUINT8x8x32_K4x8x4) { run_8x8x32_quint_benchmark(handle()); } TEST_F(ARMV7, BENCHMARK_MATRIX_MUL_INT8x8x32_MK4_DOT) { constexpr size_t RUNS = 50; param::MatrixMul param; Benchmarker benchmarker_default(handle()); benchmarker_default.set_times(RUNS) .set_dtype(0, dtype::Int8()) .set_dtype(1, dtype::Int8()) .set_dtype(2, dtype::Int32()) .set_param(param) .set_display(false); benchmarker_default.set_before_exec_callback( AlgoChecker("AARCH32_INT8_K6X8X4")); param.format = MatrixMul::Param::Format::MK4_DOT; Benchmarker benchmarker_mk4_dot(handle()); benchmarker_mk4_dot.set_before_exec_callback( AlgoChecker("AARCH32_INT8_MK4_8X4X4_DOTPROD")); benchmarker_mk4_dot.set_param(param) .set_dtype(0, dtype::Int8()) .set_dtype(1, dtype::Int8()) .set_dtype(2, dtype::Int32()) .set_display(false) .set_times(RUNS); auto run = [&](size_t M, size_t N, size_t K) { auto default_used = benchmarker_default.exec({{M, K}, {K, N}, {}}) / RUNS; auto mk4_dot_used = benchmarker_mk4_dot.exec({{M / 4, K / 4, 4, 4}, {K / 4, N, 4}, {}}) / RUNS; float computations = 2.f * M * K * N * 1e-6; printf("run: {%zu{M} %zu{K} %zu{N}} default: %f ms %f Gflops mk4_dot: " "%f ms " "%f Gflops speedup: %f\n", M, K, N, default_used, computations / default_used, mk4_dot_used, computations / mk4_dot_used, default_used / mk4_dot_used); }; for (size_t M = 4; M < 512; M *= 2) { for (size_t K = 4; K < 512; K *= 2) { for (size_t N : {4, 8, 33, 113, 128}) { run(M, N, K); } } } } #endif TEST_F(ARMV7, BENCHMARK_MATRIX_MUL_INT8x8x16_K4x2x16) { run_8x8x16_benchmark("ARMV7_INT8X8X16_K4X2X16", handle()); } TEST_F(ARMV7, BENCHMARK_MATRIX_MUL_INT8x8x16_K4x8x8) { run_8x8x16_benchmark("ARMV7_INT8X8X16_K4X8X8", handle()); } TEST_F(ARMV7, BENCHMARK_MATRIX_MUL_INT8x8x16_K8x8x4) { run_8x8x16_benchmark("ARMV7_INT8X8X16_K8X8X4", handle()); } TEST_F(ARMV7, BENCHMARK_MATRIX_MUL_INT8x8x16_MK4_K4x8x8) { run_8x8x16_benchmark( "ARMV7_INT8X8X16_MK4_K8X8X4", handle(), MatrixMul::Param::Format::MK4); } TEST_F(ARMV7, BENCHMARK_MATRIX_MUL_INT16x16x32_K12x4x1) { run_16x16x32_benchmark("ARMV7_INT16X16X32_K12X4X1", handle()); } TEST_F(ARMV7, BENCHMARK_MATRIX_MUL_INT8x8x16_K8x8x4_CONTRAST) { run_8x8x16_contrast("ARM_COMMON_INT8X8X16", "ARMV7_INT8X8X16_K8X8X4", handle()); } TEST_F(ARMV7, BENCHMARK_MATRIX_MUL_INT8x8x16_K4x8x8_CONTRAST) { run_8x8x16_contrast("ARM_COMMON_INT8X8X16", "ARMV7_INT8X8X16_K4X8X8", handle()); } TEST_F(ARMV7, BENCHMARK_MATRIX_MUL_INT8x8x16_K4x8x8_K8x8x4_CONTRAST) { run_8x8x16_contrast("ARMV7_INT8X8X16_K4X8X8", "ARMV7_INT8X8X16_K8X8X4", handle()); } #if __ARM_FEATURE_FP16_VECTOR_ARITHMETIC TEST_F(ARMV7, BENCHMARK_MATRIX_MUL_FP16) { constexpr size_t RUNS = 50; param::MatrixMul param; Benchmarker benchmarker_fp16(handle()); benchmarker_fp16.set_times(RUNS) .set_dtype(0, dtype::Float16()) .set_dtype(1, dtype::Float16()) .set_dtype(2, dtype::Float16()) .set_param(param) .set_display(false); Benchmarker benchmarker_float(handle()); benchmarker_float.set_param(param).set_display(false).set_times(RUNS); auto run = [&](size_t M, size_t N, size_t K) { auto fp16_used = benchmarker_fp16.exec({{M, K}, {K, N}, {}}) / RUNS; auto float_used = benchmarker_float.exec({{M, K}, {K, N}, {}}) / RUNS; float computations = 2.f * M * K * N * 1e-6; printf("run: {%zu{M} %zu{K} %zu{N}} float: %f ms %f Gflops fp16: %f ms " "%f Gflops speedup: %f\n", M, K, N, float_used, computations / float_used, fp16_used, computations / fp16_used, float_used / fp16_used); }; run(256, 12 * 24, 256); for (size_t M : {8, 64, 112, 256}) { for (size_t K : {8, 64, 112, 256}) { for (size_t N : {8, 64, 112, 256}) { run(M, N, K); } } } } TEST_F(ARMV7, BENCHMARK_MATRIX_MUL_F16_MK8) { auto args = matrix_mul::get_benchmark_matmul_mk_packed_args(4); matrix_mul::benchmark_with_contrast( handle(), args, dtype::Float16{}, dtype::Float16{}, dtype::Float16{}, "AARCH32_F16_MK8_4X8", param::MatrixMul::Format::MK8, dtype::Float16{}, dtype::Float16{}, dtype::Float16{}, "AARCH32_F16_K4X16X1"); } #endif TEST_F(ARMV7, BENCHMARK_MATRIX_MUL_MK4) { auto args = matrix_mul::get_benchmark_matmul_mk_packed_args(8); matrix_mul::benchmark_with_contrast( handle(), args, dtype::Float32{}, dtype::Float32{}, dtype::Float32{}, "ARMV7_F32_MK4_4x8", param::MatrixMul::Format::MK4, dtype::Float32{}, dtype::Float32{}, dtype::Float32{}); } TEST_F(ARMV7, BENCHMARK_MATRIX_MUL_PACK_MK4) { auto args = matrix_mul::get_benchmark_matmul_mk_packed_args(8); matrix_mul::benchmark_with_contrast( handle(), args, dtype::Float32{}, dtype::Float32{}, dtype::Float32{}, "ARMV7_F32_MK4_PACK_4X12", param::MatrixMul::Format::MK4, dtype::Float32{}, dtype::Float32{}, dtype::Float32{}); } TEST_F(ARMV7, BENCHMARK_MATRIX_MUL_INT16x16x32_MK8) { auto args = matrix_mul::get_benchmark_matmul_mk_packed_args(4); matrix_mul::benchmark_with_contrast( handle(), args, dtype::Int16{}, dtype::Int16{}, dtype::Int32{}, "ARMV7_INT16X16X32_MK8_4X8", param::MatrixMul::Format::MK8, dtype::Int16{}, dtype::Int16{}, dtype::Int32{}); } TEST_F(ARMV7, BENCHMARK_MATRIX_MUL_INT32_MK_4X2X16) { constexpr size_t RUNS = 50; param::MatrixMul param; param.transposeA = false; param.transposeB = false; Benchmarker benchmarker(handle()); Benchmarker benchmarker_mk4(handle()); benchmarker.set_times(RUNS) .set_dtype(0, dtype::Int8{}) .set_dtype(1, dtype::Int8{}) .set_dtype(2, dtype::Int32{}) .set_param(param) .set_display(false); benchmarker.set_before_exec_callback( AlgoChecker("ARMV7_INT8X8X32_K4X2X16")); param.format = MatrixMul::Param::Format::MK4; benchmarker_mk4.set_before_exec_callback( AlgoChecker("ARMV7_INT8X8X32_MK4_4X2X16")); benchmarker_mk4.set_times(RUNS) .set_dtype(0, dtype::Int8{}) .set_dtype(1, dtype::Int8{}) .set_dtype(2, dtype::Int32{}) .set_param(param) .set_display(false); auto run = [&](size_t M, size_t N, size_t K) { auto mk_used = benchmarker_mk4.exec({{M / 4, K / 4, 4, 4}, {K / 4, N, 4}, {}}) / RUNS; auto default_used = benchmarker.exec({{M, K}, {K, N}, {}}) / RUNS; float computations = 2.f * M * K * N * 1e-6; printf("run: {%zu{M} %zu{K} %zu{N}} normal: %f ms %f Gflops mk4: %f ms " "%f Gflops speedup_vs_normal: %f\n", M, K, N, default_used, computations / default_used, mk_used, computations / mk_used, default_used / mk_used); }; run(256, 256, 128); for (size_t k = 4; k <= 512; k *= 2) { for (size_t m = 4; m <= 512; m *= 2) { for (size_t n = 4; n <= 512; n *= 2) { run(m, n, k); } } std::cout << std::endl; } } #endif // vim: syntax=cpp.doxygen