/** * \file dnn/test/common/local.h * MegEngine is Licensed under the Apache License, Version 2.0 (the "License") * * Copyright (c) 2014-2021 Megvii Inc. All rights reserved. * * Unless required by applicable law or agreed to in writing, * software distributed under the License is distributed on an * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. */ #pragma once #include #include "megdnn/basic_types.h" #include "megdnn/opr_param_defs.h" namespace megdnn { namespace test { namespace local { struct TestArg { param::Convolution param; size_t n, ic, ih, iw, oc, oh, ow, fh, fw; TestArg(param::Convolution param, size_t n, size_t ic, size_t ih, size_t iw, size_t oc, size_t oh, size_t ow, size_t fh, size_t fw) : param(param), n(n), ic(ic), ih(ih), iw(iw), oc(oc), oh(oh), ow(ow), fh(fh), fw(fw) {} TensorShape sshape() const { return {n, ic, ih, iw}; } TensorShape fshape() const { return {oh, ow, ic, fh, fw, oc}; } TensorShape dshape() { return {n, oc, oh, ow}; } }; static inline std::vector get_args_for_cuda() { std::vector test_args; // clang-format off for (size_t N: {32, 64}) for (size_t IC: {1, 3, 8, 32, 33, 65}) for (size_t OC: {1, 3, 8, 32, 33, 65}) { test_args.emplace_back( param::Convolution{param::Convolution::Mode::CROSS_CORRELATION, 0, 0, 1, 1}, N, IC, 7, 7, OC, 5, 5, 3, 3); } // clang-format on return test_args; } static inline std::vector get_args_for_intel_gpu() { std::vector test_args; // clang-format off for (size_t N: {32, 64}) for (size_t IC: {1, 3, 8, 32, 33, 65}) for (size_t OC : {1, 3, 8, 32, 33, 65}) { test_args.emplace_back( param::Convolution{ param::Convolution::Mode::CROSS_CORRELATION, 0, 0, 1, 1}, N, IC, 7, 7, OC, 5, 5, 3, 3); } // clang-format on return test_args; } static inline std::vector get_args_for_opencl() { std::vector test_args; for (size_t N : {32, 64}) for (size_t IC : {1, 3, 32}) for (size_t OC : {1, 3, 32}) { test_args.emplace_back( param::Convolution{ param::Convolution::Mode::CROSS_CORRELATION, 0, 0, 1, 1}, N, IC, 7, 7, OC, 5, 5, 3, 3); test_args.emplace_back( param::Convolution{ param::Convolution::Mode::CROSS_CORRELATION, 1, 1, 1, 1}, N, IC, 7, 7, OC, 7, 7, 3, 3); } return test_args; } static inline std::vector get_args_bwd_data_for_cuda() { std::vector test_args; // clang-format off for (size_t N: {32, 64}) for (size_t IC: {1, 3, 8, 32, 64}) for (size_t OC : {1, 3, 8, 32, 33, 65}) { test_args.emplace_back( param::Convolution{ param::Convolution::Mode::CROSS_CORRELATION, 0, 0, 1, 1}, N, IC, 7, 7, OC, 5, 5, 3, 3); } // clang-format on return test_args; } static inline std::vector get_args_bwd_filter_for_cuda() { std::vector test_args; // clang-format off for (size_t N: {32, 64}) for (size_t IC: {1, 3, 8, 32, 56, 80}) for (size_t OC : {1, 3, 8, 32, 33, 65}) { test_args.emplace_back( param::Convolution{ param::Convolution::Mode::CROSS_CORRELATION, 0, 0, 1, 1}, N, IC, 7, 7, OC, 5, 5, 3, 3); } // clang-format on return test_args; } static inline std::vector get_args_for_fp16() { std::vector test_args; test_args.emplace_back( param::Convolution{param::Convolution::Mode::CROSS_CORRELATION, 1, 1, 1, 1}, 64, 16, 8, 7, 16, 8, 7, 3, 3); test_args.emplace_back( param::Convolution{param::Convolution::Mode::CROSS_CORRELATION, 0, 0, 1, 1}, 15, 15, 7, 7, 16, 5, 5, 3, 3); test_args.emplace_back( param::Convolution{param::Convolution::Mode::CONVOLUTION, 0, 0, 1, 1}, 15, 15, 7, 7, 16, 5, 5, 3, 3); test_args.emplace_back( param::Convolution{param::Convolution::Mode::CROSS_CORRELATION, 1, 1, 1, 1}, 15, 15, 5, 5, 16, 5, 5, 3, 3); test_args.emplace_back( param::Convolution{param::Convolution::Mode::CROSS_CORRELATION, 0, 0, 2, 2}, 15, 15, 7, 7, 16, 3, 3, 3, 3); /*! \warning: this operator need reduce values along the axis of IC, so this * will results in large error in fp16 situation. so in the test cases, we * use small IC values. */ // clang-format off for (size_t N: {1, 2}) for (size_t OC : {16, 32, 48, 64}) { test_args.emplace_back( param::Convolution{ param::Convolution::Mode::CROSS_CORRELATION, 0, 0, 1, 1}, N, 16, 7, 7, OC, 5, 5, 3, 3); test_args.emplace_back( param::Convolution{param::Convolution::Mode::CONVOLUTION, 0, 0, 1, 1}, N, 32, 7, 7, OC, 5, 5, 3, 3); } // clang-format on return test_args; } static inline std::vector get_args() { std::vector test_args; test_args.emplace_back( param::Convolution{param::Convolution::Mode::CROSS_CORRELATION, 1, 1, 1, 1}, 64, 16, 8, 7, 16, 8, 7, 3, 3); test_args.emplace_back( param::Convolution{param::Convolution::Mode::CROSS_CORRELATION, 0, 0, 1, 1}, 15, 15, 7, 7, 16, 5, 5, 3, 3); test_args.emplace_back( param::Convolution{param::Convolution::Mode::CONVOLUTION, 0, 0, 1, 1}, 15, 15, 7, 7, 16, 5, 5, 3, 3); test_args.emplace_back( param::Convolution{param::Convolution::Mode::CROSS_CORRELATION, 1, 1, 1, 1}, 15, 15, 5, 5, 16, 5, 5, 3, 3); test_args.emplace_back( param::Convolution{param::Convolution::Mode::CROSS_CORRELATION, 0, 0, 2, 2}, 15, 15, 7, 7, 16, 3, 3, 3, 3); for (size_t N : {1, 2}) // clang-format off for (size_t OC : {16, 32, 48, 64}) { test_args.emplace_back( param::Convolution{ param::Convolution::Mode::CROSS_CORRELATION, 0, 0, 1, 1}, N, 32, 7, 7, OC, 5, 5, 3, 3); test_args.emplace_back( param::Convolution{param::Convolution::Mode::CONVOLUTION, 0, 0, 1, 1}, N, 32, 7, 7, OC, 5, 5, 3, 3); } // clang-format on return test_args; } } // namespace local } // namespace test } // namespace megdnn // vim: syntax=cpp.doxygen