/** * \file dnn/test/cpu/mask_conv.cpp * MegEngine is Licensed under the Apache License, Version 2.0 (the "License") * * Copyright (c) 2014-2021 Megvii Inc. All rights reserved. * * Unless required by applicable law or agreed to in writing, * software distributed under the License is distributed on an * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. */ #include "test/cpu/fixture.h" #include "megdnn/oprs.h" #include "test/common/benchmarker.h" #include "test/common/checker.h" #include "test/common/mask_conv.h" #include "test/common/rng.h" #include "test/common/utils.h" using namespace megdnn; using namespace test; TEST_F(CPU, MASK_CONV) { mask_conv_test(handle()); } #if MEGDNN_WITH_BENCHMARK TEST_F(CPU, MASK_CONV_BENCHMARK) { mask_conv_benchmark(handle()); } #endif TEST_F(CPU, MASK_PROPAGATE) { param::MaskPropagate mask_param; auto mask_check = [&](const TensorNDArray& tensors) { auto mask_src = tensors[0]; auto mask_dst = tensors[1]; auto src_ptr = static_cast(megdnn_malloc( handle(), mask_src.layout.total_nr_elems() * sizeof(float))); auto src = TensorND{ src_ptr, TensorLayout{ mask_src.layout.reshape( {1, 1, mask_src.layout[0], mask_src.layout[1]}), dtype::Float32()}}; for (size_t i = 0; i < src.layout.total_nr_elems(); ++i) { src_ptr[i] = static_cast(mask_src.ptr()[i]); } auto filter_ptr = static_cast(megdnn_malloc( handle(), mask_param.kernel_h * mask_param.kernel_w * sizeof(float))); auto filter = TensorND{ static_cast(filter_ptr), TensorLayout{ {1, 1, mask_param.kernel_h, mask_param.kernel_w}, dtype::Float32()}}; for (size_t i = 0; i < mask_param.kernel_h * mask_param.kernel_w; ++i) { filter_ptr[i] = 1.0; } TensorLayout dst_layout{dtype::Float32()}; param::Convolution conv_param{ param::Convolution::Mode::CROSS_CORRELATION, mask_param.pad_h, mask_param.pad_w, mask_param.stride_h, mask_param.stride_w, mask_param.dilate_h, mask_param.dilate_w}; auto opr = handle()->create_operator(); opr->param() = conv_param; opr->deduce_layout(src.layout, filter.layout, dst_layout); auto dst_ptr = static_cast(megdnn_malloc( handle(), mask_dst.layout.total_nr_elems() * sizeof(float))); auto dst = TensorND{dst_ptr, dst_layout}; WorkspaceWrapper workspace{ handle(), opr->get_workspace_in_bytes( src.layout, filter.layout, dst.layout, nullptr)}; opr->exec(src, filter, dst, nullptr, workspace.workspace()); for (size_t i = 0; i < dst.layout.total_nr_elems(); ++i) { mask_dst.ptr()[i] = dst_ptr[i] > 0; } delete dst_ptr; delete filter_ptr; delete src_ptr; }; Checker checker(handle()); auto rng = std::make_unique(0.5); checker.set_extra_opr_impl(mask_check) .set_dtype(0, dtype::Int32()) .set_rng(0, rng.get()); auto run = [&](size_t IH, size_t IW, size_t FH, size_t FW, size_t SH = 1, size_t SW = 1, size_t PH = 0, size_t PW = 0, size_t DH = 1, size_t DW = 1) { mask_param.kernel_h = FH; mask_param.kernel_w = FW; mask_param.pad_h = PH; mask_param.pad_w = PW; mask_param.stride_h = SH; mask_param.stride_w = SW; mask_param.dilate_h = DH; mask_param.dilate_w = DW; checker.set_param(mask_param); TensorShape src_shape{IH, IW}, dst_shape{}; checker.execs({src_shape, dst_shape}); }; run(5, 5, 3, 2); run(5, 5, 2, 3, 2, 2); run(5, 5, 3, 3, 2, 2, 1, 2); run(5, 5, 3, 3, 2, 1, 1, 2); run(5, 5, 3, 3, 1, 2, 2, 2); run(24, 23, 4, 4, 1, 1, 3, 2); run(24, 23, 4, 4, 1, 1, 3, 2, 2, 2); run(24, 23, 4, 4, 1, 1, 3, 2, 2, 3); run(24, 23, 4, 4, 1, 1, 3, 2, 3, 3); } // vim: syntax=cpp.doxygen