/** * \file dnn/test/cuda/benchmark.cpp * MegEngine is Licensed under the Apache License, Version 2.0 (the "License") * * Copyright (c) 2014-2021 Megvii Inc. All rights reserved. * * Unless required by applicable law or agreed to in writing, * software distributed under the License is distributed on an * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. */ #include "test/cuda/fixture.h" #include "megdnn/oprs.h" #include "src/cuda/utils.h" #include "test/common/benchmarker.h" #include "test/common/tensor.h" #include "test/common/timer.h" #include "test/common/workspace_wrapper.h" namespace megdnn { namespace test { #if MEGDNN_WITH_BENCHMARK TEST_F(CUDA, BENCHMARK_CONVOLUTION_8X8X32) { if (!cuda::is_compute_capability_required(6, 1)) { printf("Skip CUDA.BENCHMARK_CONVOLUTION_8X8X32 test as current device" "doesn't support\n"); return; } using Param = param::Convolution; auto run_1x1 = [&](size_t N, size_t OC, size_t IC, size_t H, size_t W) { Benchmarker benchmarker(handle_cuda()); Param param_base; Param param_float = param_base, param_int = param_base; param_int.format = Param::Format::NHWC; TensorShape src_float{N, IC, H, W}, filter_float{OC, IC, 1, 1}; TensorShape src_int{N, H, W, IC}, filter_int{OC, 1, 1, IC}; benchmarker.set_display(false); auto time_in_ms_float = benchmarker.set_param(param_float) .set_dtype(0, dtype::Float32()) .set_dtype(1, dtype::Float32()) .set_dtype(2, dtype::Float32()) .execs({src_float, filter_float, {}}); auto time_in_ms_int = benchmarker.set_param(param_int) .set_dtype(0, dtype::Int8()) .set_dtype(1, dtype::Int8()) .set_dtype(2, dtype::Int32()) .execs({src_int, filter_int, {}}); std::cout << "1x1: N=" << N << " OC=" << OC << " IC=" << IC << " H=" << H << " W=" << W << " time_float=" << time_in_ms_float << "ms" << " time_int=" << time_in_ms_int << "ms" << std::endl; }; auto run_chanwise = [&](size_t N, size_t C, size_t H, size_t W, size_t F) { size_t P = F / 2; Benchmarker benchmarker(handle_cuda()); Param param_base; param_base.pad_h = param_base.pad_w = P; param_base.sparse = Param::Sparse::GROUP; Param param_float = param_base; Param param_int = param_base; param_int.format = Param::Format::NHWC; TensorShape src_float{N, C, H, W}, filter_float{C, 1, 1, F, F}; TensorShape src_int{N, H, W, C}, filter_int{C, 1, F, F, 1}; benchmarker.set_display(false); auto time_in_ms_float = benchmarker.set_param(param_float) .set_dtype(0, dtype::Float32()) .set_dtype(1, dtype::Float32()) .set_dtype(2, dtype::Float32()) .execs({src_float, filter_float, {}}); auto time_in_ms_int = benchmarker.set_param(param_int) .set_dtype(0, dtype::Int8()) .set_dtype(1, dtype::Int8()) .set_dtype(2, dtype::Int32()) .execs({src_int, filter_int, {}}); std::cout << "chanwise: N=" << N << " C=" << C << " H=" << H << " W=" << W << " F=" << F << " time_float=" << time_in_ms_float << "ms" << " time_int=" << time_in_ms_int << "ms" << std::endl; }; run_chanwise(1, 384, 56, 56, 3); run_1x1(1, 32, 32, 56, 56); run_1x1(1, 256, 256, 7, 7); } TEST_F(CUDA, BENCHMARK_REDUCE) { auto run = [&](size_t A, size_t B, size_t C) { Tensor<> src(handle_cuda(), TensorLayout({A, B, C}, dtype::Float32())), dst(handle_cuda(), TensorLayout({A, 1, C}, dtype::Float32())); auto opr = handle_cuda()->create_operator(); opr->param().axis = 1; WorkspaceWrapper workspace( handle_cuda(), opr->get_workspace_in_bytes(src.layout(), dst.layout())); opr->exec(src.tensornd(), dst.tensornd(), workspace.workspace()); Timer timer; megcoreSynchronize(handle_cuda()->megcore_computing_handle()); timer.start(); for (size_t i = 0; i < 10; ++i) opr->exec(src.tensornd(), dst.tensornd(), workspace.workspace()); megcoreSynchronize(handle_cuda()->megcore_computing_handle()); timer.stop(); float time_in_us = timer.get_time_in_us(); std::cout << "src = " << A << "x" << B << "x" << C << std::endl << "time = " << time_in_us / 1e3 << "ms" << std::endl; }; run(65536, 64, 1); run(1, 268435455, 1); run(256, 1048575, 1); run(1, 1048575, 256); run(256, 4095, 256); } TEST_F(CUDA, BENCHMARK_BATCHED_MATRIX_MUL) { auto run = [&](size_t b, size_t m, size_t n, size_t k) { Tensor<> A(handle_cuda(), TensorLayout({b, m, k}, dtype::Float32())); Tensor<> B(handle_cuda(), TensorLayout({b, k, n}, dtype::Float32())); Tensor<> C(handle_cuda(), TensorLayout({b, m, n}, dtype::Float32())); auto opr = handle_cuda()->create_operator(); WorkspaceWrapper workspace( handle_cuda(), opr->get_workspace_in_bytes(A.layout(), B.layout(), C.layout())); opr->exec(A.tensornd(), B.tensornd(), C.tensornd(), workspace.workspace()); Timer timer; megcoreSynchronize(handle_cuda()->megcore_computing_handle()); timer.start(); opr->exec(A.tensornd(), B.tensornd(), C.tensornd(), workspace.workspace()); megcoreSynchronize(handle_cuda()->megcore_computing_handle()); timer.stop(); float time_in_s = timer.get_time_in_us() / 1e6; float flo = b * m * n * k * 2; float gflops = flo / time_in_s / 1e9; std::cout << "time_in_s = " << time_in_s << '\n' << "flo = " << flo << '\n' << "gflops = " << gflops << std::endl; }; run(256, 256, 256, 256); } TEST_F(CUDA, BENCHMARK_MATRIX_MUL) { auto run = [&](size_t m, size_t n, size_t k) { Tensor<> A(handle_cuda(), TensorLayout({m, k}, dtype::Float32())); Tensor<> B(handle_cuda(), TensorLayout({k, n}, dtype::Float32())); Tensor<> C(handle_cuda(), TensorLayout({m, n}, dtype::Float32())); auto opr = handle_cuda()->create_operator(); WorkspaceWrapper workspace( handle_cuda(), opr->get_workspace_in_bytes(A.layout(), B.layout(), C.layout())); opr->exec(A.tensornd(), B.tensornd(), C.tensornd(), workspace.workspace()); Timer timer; megcoreSynchronize(handle_cuda()->megcore_computing_handle()); timer.start(); opr->exec(A.tensornd(), B.tensornd(), C.tensornd(), workspace.workspace()); megcoreSynchronize(handle_cuda()->megcore_computing_handle()); timer.stop(); float time_in_s = timer.get_time_in_us() / 1e6; float flo = m * n * k * 2; float gflops = flo / time_in_s / 1e9; std::cout << "time_in_s = " << time_in_s << '\n' << "flo = " << flo << '\n' << "gflops = " << gflops << std::endl; }; run(4096, 4096, 4096); } TEST_F(CUDA, BENCHMARK_LOCAL) { auto run = [&](size_t N, size_t IC, size_t IH, size_t IW, size_t OC, size_t OH, size_t OW, size_t FH, size_t FW) { Tensor<> src(handle_cuda(), TensorLayout({N, IC, IH, IW}, dtype::Float32())); Tensor<> filter( handle_cuda(), TensorLayout({OH, OW, IC, FH, FW, OC}, dtype::Float32())); Tensor<> dst(handle_cuda(), TensorLayout({N, OC, OH, OW}, dtype::Float32())); auto opr = handle_cuda()->create_operator(); WorkspaceWrapper workspace( handle_cuda(), opr->get_workspace_in_bytes( src.layout(), filter.layout(), dst.layout())); opr->exec( src.tensornd(), filter.tensornd(), dst.tensornd(), workspace.workspace()); Timer timer; megcoreSynchronize(handle_cuda()->megcore_computing_handle()); timer.start(); opr->exec( src.tensornd(), filter.tensornd(), dst.tensornd(), workspace.workspace()); megcoreSynchronize(handle_cuda()->megcore_computing_handle()); timer.stop(); float time_in_us = timer.get_time_in_us(); std::cout << "time = " << time_in_us << "us" << std::endl; }; run(32, 64, 7, 7, 64, 5, 5, 3, 3); } #endif } // namespace test } // namespace megdnn // vim: syntax=cpp.doxygen