/** * \file dnn/test/cuda/convolution3d.cpp * MegEngine is Licensed under the Apache License, Version 2.0 (the "License") * * Copyright (c) 2014-2021 Megvii Inc. All rights reserved. * * Unless required by applicable law or agreed to in writing, * software distributed under the License is distributed on an * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. */ #include "test/common/convolution3d.h" #include "megdnn/opr_param_defs.h" #include "megdnn/oprs.h" #include "src/cuda/utils.h" #include "test/common/benchmarker.h" #include "test/common/checker.h" #include "test/common/rng.h" #include "test/common/tensor.h" #include "test/common/workspace_wrapper.h" #include "test/cuda/fixture.h" namespace megdnn { namespace test { #if 0 TEST_F(CUDA, CONVOLUTION3D_8X8X32) { if (!cuda::is_compute_capability_required(6, 1)) { printf("Skip CUDA.CONVOLUTION_8X8X32 test as current device" "doesn't support\n"); return; } using namespace convolution3d; std::vector args; { auto v = get_args(); for (auto&& a : v) { args.push_back(std::move(a)); } } /* { auto v = get_dilated_args(); for (auto &&a: v) { args.push_back(std::move(a)); } } { auto v = get_chanwise_args(); for (auto &&a: v) { args.push_back(std::move(a)); } } */ Checker checker(handle_cuda()); UniformIntRNG rng(-4, 4); UniformIntRNG rng_same(1, 1); for (auto arg : args) { arg.param.format = param::Convolution3D::Format::NDHWC; arg.param.data_type = param::Convolution3D::DataType::INT8x8x32; arg.src = cvt_src_or_dst_ncdhw2ndhwc(arg.src); arg.filter = cvt_filter_ncdhw2ndhwc(arg.filter); checker.set_dtype(0, dtype::Int8()) .set_dtype(1, dtype::Int8()) .set_dtype(2, dtype::Int32()) .set_param(arg.param) .set_rng(0, &rng) .set_rng(1, &rng) .execs({arg.src, arg.filter, {}}); } } #endif TEST_F(CUDA, CONVOLUTION3D_FORWARD) { using namespace convolution3d; std::vector args = get_args(); /* { auto v = get_chanwise_args(); for (auto&& a : v) { args.push_back(std::move(a)); } } { auto v = get_dilated_args(); for (auto&& a : v) { args.push_back(std::move(a)); } } */ bool fp16_checked = false; Checker checker(handle_cuda()); NormalRNG default_rng; for (auto&& arg : args) { float scale = 1.0f / sqrt(arg.filter[1] * arg.filter[2] * arg.filter[3] * arg.filter[4]); UniformFloatRNG rng(scale, 2 * scale); checker.set_dtype(0, dtype::Float32()) .set_dtype(1, dtype::Float32()) .set_rng(0, &default_rng) .set_rng(1, &default_rng) .set_epsilon(1e-3) .set_param(arg.param) .execs({arg.src, arg.filter, {}}); if (!fp16_checked || arg.src.total_nr_elems() >= 1000) continue; checker.set_dtype(0, dtype::Float16()) .set_dtype(1, dtype::Float16()) .set_rng(0, &rng) .set_rng(1, &rng) .set_epsilon(1e-1) .set_param(arg.param) .execs({arg.src, arg.filter, {}}); } } TEST_F(CUDA, CONVOLUTION3D_1X1X1_FORWARD) { using namespace convolution3d; std::vector args = get_1x1x1_args(); Checker checker(handle_cuda()); NormalRNG default_rng; for (auto&& arg : args) { float scale = 1.0f / sqrt(arg.filter[1] * arg.filter[2] * arg.filter[3] * arg.filter[4]); UniformFloatRNG rng(scale, 2 * scale); checker.set_dtype(0, dtype::Float32()) .set_dtype(1, dtype::Float32()) .set_rng(0, &default_rng) .set_rng(1, &default_rng) .set_epsilon(1e-3) .set_param(arg.param) .execs({arg.src, arg.filter, {}}); } } TEST_F(CUDA, CONVOLUTION3D_MATMUL_FORWARD) { using namespace convolution3d; std::vector args = get_args(); Checker checker(handle_cuda()); NormalRNG default_rng; for (auto&& arg : args) { float scale = 1.0f / sqrt(arg.filter[1] * arg.filter[2] * arg.filter[3] * arg.filter[4]); UniformFloatRNG rng(scale, 2 * scale); checker.set_dtype(0, dtype::Float32()) .set_dtype(1, dtype::Float32()) .set_rng(0, &default_rng) .set_rng(1, &default_rng) .set_param(arg.param) .execs({arg.src, arg.filter, {}}); } } TEST_F(CUDA, CONVOLUTION3D_FORWARD_NONCONTIG_CUDNN) { using namespace convolution3d; Checker checker(handle_cuda()); checker.set_before_exec_callback(AlgoChecker("CUDNN")); param::Convolution3D param; param.pad_d = param.pad_h = param.pad_w = 1; checker.set_dtype(0, dtype::Float32()) .set_dtype(1, dtype::Float32()) .set_epsilon(1e-3); //! noncontiguous case { checker.set_param(param).execl(TensorLayoutArray{ {{4, 5, 16, 16, 16}, {40960, 4096, 256, 16, 1}, dtype::Float32()}, {{5, 5, 3, 3, 3}, {135, 27, 9, 3, 1}, dtype::Float32()}, {{4, 5, 16, 16, 16}, {40960, 4096, 256, 16, 1}, dtype::Float32()}}); } } TEST_F(CUDA, CONVOLUTION3D_FORWARD_NONCONTIG_INPLACE_MATMUL) { using namespace convolution3d; Checker checker(handle_cuda()); checker.set_before_exec_callback( AlgoChecker("INPLACE_MATMUL")); param::Convolution3D param; param.pad_d = param.pad_h = param.pad_w = 1; checker.set_dtype(0, dtype::Float32()) .set_dtype(1, dtype::Float32()) .set_epsilon(1e-3); //! noncontiguous case { checker.set_param(param).execl(TensorLayoutArray{ {{4, 5, 16, 16, 16}, {40960, 4096, 256, 16, 1}, dtype::Float32()}, {{5, 5, 3, 3, 3}, {135, 27, 9, 3, 1}, dtype::Float32()}, {{4, 5, 16, 16, 16}, {40960, 4096, 256, 16, 1}, dtype::Float32()}}); } } TEST_F(CUDA, CONVOLUTION3D_FORWARD_NONCONTIG_1x1x1) { using namespace convolution3d; Checker checker(handle_cuda()); checker.set_before_exec_callback(AlgoChecker("1x1x1")); param::Convolution3D param; checker.set_dtype(0, dtype::Float32()) .set_dtype(1, dtype::Float32()) .set_epsilon(1e-3); //! noncontiguous case { checker.set_param(param).execl(TensorLayoutArray{ {{4, 5, 16, 16, 16}, {40960, 4096, 256, 16, 1}, dtype::Float32()}, {{5, 5, 1, 1, 1}, {5, 1, 1, 1, 1}, dtype::Float32()}, {{4, 5, 16, 16, 16}, {40960, 4096, 256, 16, 1}, dtype::Float32()}}); } } #if MEGDNN_WITH_BENCHMARK TEST_F(CUDA, BENCHMARK_CONVOLUTION3D_MATMUL_BACKWARD_FILTER) { using namespace convolution3d; std::vector args = get_speed_test_args(); Benchmarker marker(handle_cuda()); NormalRNG default_rng; for (auto&& arg : args) { float scale = 1.0f / sqrt(arg.filter[1] * arg.filter[2] * arg.filter[3] * arg.filter[4]); auto src = TensorLayout(arg.src, dtype::Float32()); auto filter = TensorLayout(arg.filter, dtype::Float32()); TensorLayout dst; auto opr = handle_cuda()->create_operator(); opr->param() = arg.param; opr->deduce_layout(src, filter, dst); UniformFloatRNG rng(scale, 2 * scale); marker.set_dtype(0, dtype::Float32()) .set_dtype(1, dtype::Float32()) .set_rng(0, &default_rng) .set_rng(1, &default_rng) .set_param(arg.param) .execs({src, dst, filter}); } } TEST_F(CUDA, BENCHMARK_CONVOLUTION3D_MATMUL_FORWARD) { using namespace convolution3d; std::vector args = get_speed_test_args(); Benchmarker marker(handle_cuda()); NormalRNG default_rng; for (auto&& arg : args) { float scale = 1.0f / sqrt(arg.filter[1] * arg.filter[2] * arg.filter[3] * arg.filter[4]); UniformFloatRNG rng(scale, 2 * scale); marker.set_dtype(0, dtype::Float32()) .set_dtype(1, dtype::Float32()) .set_rng(0, &default_rng) .set_rng(1, &default_rng) . // set_param(arg.param). execs({arg.src, arg.filter, {}}); } } TEST_F(CUDA, BENCHMARK_CONVOLUTION3D_1X1X1_FORWARD) { using namespace convolution3d; std::vector args = get_1x1x1_args(); Benchmarker marker(handle_cuda()); NormalRNG default_rng; for (auto&& arg : args) { float scale = 1.0f / sqrt(arg.filter[1] * arg.filter[2] * arg.filter[3] * arg.filter[4]); UniformFloatRNG rng(scale, 2 * scale); marker.set_dtype(0, dtype::Float32()) .set_dtype(1, dtype::Float32()) .set_rng(0, &default_rng) .set_rng(1, &default_rng) . // set_param(arg.param). execs({arg.src, arg.filter, {}}); } } TEST_F(CUDA, BENCHMARK_CONVOLUTION3D_FORWARD) { using namespace convolution3d; std::vector args = get_args(); { auto v = get_chanwise_args(); for (auto&& a : v) args.push_back(std::move(a)); } { auto v = get_1x1x1_args(); for (auto&& a : v) args.push_back(std::move(a)); } { auto v = get_dilated_args(); for (auto&& a : v) args.push_back(std::move(a)); } Benchmarker marker(handle_cuda()); NormalRNG default_rng; for (auto&& arg : args) { float scale = 1.0f / sqrt(arg.filter[1] * arg.filter[2] * arg.filter[3] * arg.filter[4]); UniformFloatRNG rng(scale, 2 * scale); marker.set_dtype(0, dtype::Float32()) .set_dtype(1, dtype::Float32()) .set_rng(0, &default_rng) .set_rng(1, &default_rng) .set_param(arg.param) .execs({arg.src, arg.filter, {}}); marker.set_dtype(0, dtype::Float16()) .set_dtype(1, dtype::Float16()) .set_rng(0, &rng) .set_rng(1, &rng) .set_param(arg.param) .execs({arg.src, arg.filter, {}}); } } #endif TEST_F(CUDA, CONVOLUTION3D_BACKWARD_DATA) { using namespace convolution3d; std::vector args = get_args(); Checker checker(handle_cuda()); NormalRNG default_rng; for (auto&& arg : args) { float scale = 1.0f / sqrt(arg.filter[0] * arg.filter[2] * arg.filter[3] * arg.filter[4]); UniformFloatRNG rng(scale, 2 * scale); auto src = TensorLayout(arg.src, dtype::Float32()); auto filter = TensorLayout(arg.filter, dtype::Float32()); TensorLayout dst; { auto opr = handle_cuda()->create_operator(); opr->param() = arg.param; opr->deduce_layout(src, filter, dst); } src.dtype = dst.dtype = filter.dtype = dtype::Float32(); checker.set_rng(0, &default_rng) .set_rng(1, &default_rng) .set_epsilon(1e-3) .set_param(arg.param) .exec(TensorLayoutArray{filter, dst, src}); src.dtype = dst.dtype = filter.dtype = dtype::Float16(); checker.set_rng(0, &rng) .set_rng(1, &rng) .set_epsilon(1e-1) .set_param(arg.param) .exec(TensorLayoutArray{filter, dst, src}); } } TEST_F(CUDA, CONVOLUTION3D_BACKWARD_FILTER) { using namespace convolution3d; std::vector args = get_args(); Checker checker(handle_cuda()); NormalRNG default_rng; for (auto&& arg : args) { auto src = TensorLayout(arg.src, dtype::Float32()); auto filter = TensorLayout(arg.filter, dtype::Float32()); TensorLayout dst; { auto opr = handle_cuda()->create_operator(); opr->param() = arg.param; opr->deduce_layout(src, filter, dst); } float scale = 1.0f / sqrt(dst[0] * dst[2] * dst[3] * dst[4]); UniformFloatRNG rng(scale, 2 * scale); src.dtype = dst.dtype = filter.dtype = dtype::Float32(); checker.set_rng(0, &default_rng) .set_rng(1, &default_rng) .set_epsilon(1e-3) .set_param(arg.param) .exec(TensorLayoutArray{src, dst, filter}); if (dst.total_nr_elems() >= 1000) continue; src.dtype = dst.dtype = filter.dtype = dtype::Float16(); checker.set_rng(0, &rng) .set_rng(1, &rng) .set_epsilon(1e-1) .set_param(arg.param) .exec(TensorLayoutArray{src, dst, filter}); } } TEST_F(CUDA, CONVOLUTION3D_MATMUL_BACKWARD_FILTER) { using namespace convolution3d; std::vector args = get_args(); Checker checker(handle_cuda()); NormalRNG default_rng; for (auto&& arg : args) { float scale = 1.0f / sqrt(arg.filter[1] * arg.filter[2] * arg.filter[3] * arg.filter[4]); UniformFloatRNG rng(scale, 2 * scale); auto src = TensorLayout(arg.src, dtype::Float32()); auto filter = TensorLayout(arg.filter, dtype::Float32()); TensorLayout dst; auto opr = handle_cuda()->create_operator(); opr->param() = arg.param; opr->deduce_layout(src, filter, dst); src.dtype = dst.dtype = filter.dtype = dtype::Float32(); checker.set_rng(0, &default_rng) .set_rng(1, &default_rng) .set_param(arg.param) .exec(TensorLayoutArray{src, dst, filter}); } } TEST_F(CUDA, CONVOLUTION3D_BACKWARD_DATA_NONCONTIG_CUDNN) { using namespace convolution3d; Checker checker(handle_cuda()); checker.set_before_exec_callback(AlgoChecker("CUDNN")); Convolution3DBackwardData::Param param; param.pad_d = param.pad_h = param.pad_w = 1; NormalRNG default_rng; checker.set_dtype(0, dtype::Float32()) .set_dtype(1, dtype::Float32()) .set_rng(0, &default_rng) .set_rng(1, &default_rng) .set_epsilon(1e-3) .set_param(param); //! noncontiguous case { checker.execl(TensorLayoutArray{ {{5, 5, 3, 3, 3}, {135, 27, 9, 3, 1}, dtype::Float32()}, {{4, 5, 16, 16, 16}, {40960, 4096, 256, 16, 1}, dtype::Float32()}, {{4, 5, 16, 16, 16}, {40960, 4096, 256, 16, 1}, dtype::Float32()}}); } } TEST_F(CUDA, CONVOLUTION3D_BACKWARD_FILTER_NONCONTIG_CUDNN) { using namespace convolution3d; Checker checker(handle_cuda()); checker.set_before_exec_callback(AlgoChecker("CUDNN")); Convolution3DBackwardFilter::Param param; param.pad_d = param.pad_h = param.pad_w = 1; NormalRNG default_rng; checker.set_dtype(0, dtype::Float32()) .set_dtype(1, dtype::Float32()) .set_rng(0, &default_rng) .set_rng(1, &default_rng) .set_epsilon(1e-3) .set_param(param); //! noncontiguous case { checker.execl(TensorLayoutArray{ {{4, 5, 16, 16, 16}, {40960, 4096, 256, 16, 1}, dtype::Float32()}, {{4, 5, 16, 16, 16}, {40960, 4096, 256, 16, 1}, dtype::Float32()}, {{5, 5, 3, 3, 3}, {135, 27, 9, 3, 1}, dtype::Float32()}}); } } /* TEST_F(CUDA, CONV_CONFIG_COMBINATIONS) { auto eps_getter = [](bool f16, int stage, const char *name) -> float { if (f16) { return stage == 2 ? 0.9 : 0.7; } if (strstr(name, "WINOGRAD_NONFUSED")) return 0.3; return 1e-3; }; convolution3d::test_conv_config_combinations(handle_cuda(), false, true, true, eps_getter); } */ } // namespace test } // namespace megdnn // vim: syntax=cpp.doxygen