/** * \file dnn/test/cuda/local_share.cpp * MegEngine is Licensed under the Apache License, Version 2.0 (the "License") * * Copyright (c) 2014-2021 Megvii Inc. All rights reserved. * * Unless required by applicable law or agreed to in writing, * software distributed under the License is distributed on an * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. */ #include "megdnn/oprs/nn.h" #include "src/common/utils.h" #include "test/common/checker.h" #include "test/common/convolution.h" #include "test/common/tensor.h" #include "test/common/workspace_wrapper.h" #include "test/cuda/benchmark.h" #include "test/cuda/fixture.h" #include "test/cuda/utils.h" using namespace megdnn; using namespace test; namespace { struct LocalShareArgs { size_t b, c, f, p, s, h, w, sg; }; std::vector get_local_share_conv_1x1_args_lar_bs() { std::vector ret; // clang-format off for (size_t b : {32, 64}) { for (size_t c : {32, 16, 8}) { for (size_t f : {1}) { for (int p : {0}) { for (size_t s : {1, 2}) { for (size_t h : {8, 16}) { for (size_t w : {2, 3, 4, 5, 6, 7, 8, 9, 10, 16, 24, 32, 33}) { for (size_t sg : {3, 2}) { size_t ho = infer_conv_shape(h, f, s, p); size_t wo = infer_conv_shape(w, f, s, p); if (ho % sg != 0 || wo % sg != 0) continue; ret.emplace_back(LocalShareArgs{b, c, f, static_cast(p), s, h, w, sg}); } } } } } } } } // clang-format on return ret; } std::vector get_local_share_conv_3x3_args_lar_bs() { std::vector ret; // clang-format off for (size_t b : {32, 64}) { for (size_t c : {32, 16, 8}) { for (size_t f : {3}) { for (int p : {static_cast(f / 2), 0}) { for (size_t s : {1, 2}) { for (size_t h : {8, 16}) { for (size_t w : {3, 4, 5, 6, 7, 8, 9, 10, 16, 24, 32, 33}) { for (size_t sg : {3, 2}) { size_t ho = infer_conv_shape(h, f, s, p); size_t wo = infer_conv_shape(w, f, s, p); if (ho % sg != 0 || wo % sg != 0) continue; ret.emplace_back(LocalShareArgs{b, c, f, static_cast(p), s, h, w, sg}); } } } } } } } } // clang-format on return ret; } std::vector get_local_share_conv_5x5_args_lar_bs() { std::vector ret; // clang-format off for (size_t b : {32, 64}) { for (size_t c : {32, 16, 8}) { for (size_t f : {5}) { for (int p : {static_cast(f / 2), 0}) { for (size_t s : {1, 2}) { for (size_t h : {8, 16}) { for (size_t w : {8, 9, 10, 16, 24, 32, 33}) { for (size_t sg : {3, 2}) { size_t ho = infer_conv_shape(h, f, s, p); size_t wo = infer_conv_shape(w, f, s, p); if (ho % sg != 0 || wo % sg != 0) continue; ret.emplace_back(LocalShareArgs{b, c, f, static_cast(p), s, h, w, sg}); } } } } } } } } // clang-format on return ret; } std::vector get_local_share_conv_7x7_args_lar_bs() { std::vector ret; // clang-format off for (size_t b : {32, 64}) { for (size_t c : {32, 16, 8}) { for (size_t f : {7}) { for (int p : {static_cast(f / 2), 0}) { for (size_t s : {1, 2}) { for (size_t h : {8, 16}) { for (size_t w : {8, 9, 10, 16, 24, 32, 33}) { for (size_t sg : {3, 2}) { size_t ho = infer_conv_shape(h, f, s, p); size_t wo = infer_conv_shape(w, f, s, p); if (ho % sg != 0 || wo % sg != 0) continue; ret.emplace_back(LocalShareArgs{b, c, f, static_cast(p), s, h, w, sg}); } } } } } } } } // clang-format on return ret; } std::vector get_local_share_conv_small_image(size_t kernel_size) { size_t f = kernel_size; std::vector ret; // clang-format off for (size_t b : {8, 16, 32, 48, 64}) { for (size_t c : {8, 16, 32, 48, 64, 96, 128}) { for (int p : {static_cast(f / 2), 0}) { for (size_t s : {1, 2}) { for (size_t h : {12}) { for (size_t w : {12}) { for (size_t sg : {3, 2}) { size_t ho = infer_conv_shape(h, f, s, p); size_t wo = infer_conv_shape(w, f, s, p); if (ho % sg != 0 || wo % sg != 0) continue; ret.emplace_back(LocalShareArgs{b, c, f, static_cast(p), s, h, w, sg}); } } } } } } } // clang-format on return ret; } std::vector get_local_share_conv_small_image() { std::vector ret = get_local_share_conv_small_image(3); auto ret1 = get_local_share_conv_small_image(5); auto ret2 = get_local_share_conv_small_image(7); ret.insert(ret.begin(), ret1.begin(), ret1.end()); ret.insert(ret.begin(), ret2.begin(), ret2.end()); return ret; } void test_local_share_bwd_data_implicit_gemm(size_t kernel_size, Handle* handle) { Checker checker(handle); bool require_algo = false; checker.set_before_exec_callback(AlgoChecker( "LOCAL_SHARE_IMPLICIT_GEMM", &require_algo)); using Param = LocalShare::Param; ConstValue const_0{0}; auto args = get_local_share_conv_small_image(kernel_size); for (auto&& arg : args) { static_cast(arg); size_t b = arg.b, c = arg.c, f = arg.f, p = arg.p, s = arg.s, h = arg.h, w = arg.w, sg = arg.sg; size_t ho = infer_conv_shape(h, f, s, p), wo = infer_conv_shape(w, f, s, p); Param param; param.stride_h = param.stride_w = s; param.pad_h = param.pad_w = p; param.spatial_groups_h = param.spatial_groups_w = sg; checker.set_param(param); checker.set_rng(2, &const_0); TensorShape diff{b, c, ho, wo}, filter{sg, sg, 4, f, f, c}, grad{b, 4, h, w}; checker.execs({filter, diff, grad}); diff = TensorShape{b, c, ho, wo}, filter = TensorShape{sg, sg, 8, f, f, c}; grad = {b, 8, h, w}; checker.exec({filter, diff, grad}); } } } // namespace TEST_F(CUDA, LOCAL_SHARE_FORWARD_1x1_LAR_BS) { require_compute_capability(6, 0); Checker checker(handle_cuda()); bool require_algo = false; checker.set_before_exec_callback(AlgoChecker( "LOCAL_SHARE_CHWN_BATCH_SIZE_AWARE", &require_algo)); using Param = LocalShare::Param; auto args = get_local_share_conv_1x1_args_lar_bs(); for (auto&& arg : args) { size_t b = arg.b, c = arg.c, f = arg.f, p = arg.p, s = arg.s, h = arg.h, w = arg.w, sg = arg.sg; Param param; param.stride_h = param.stride_w = s; param.pad_h = param.pad_w = p; param.spatial_groups_h = param.spatial_groups_w = sg; checker.set_param(param); TensorShape src{b, 4, h, w}, filter{sg, sg, 4, f, f, c}; checker.execs({src, filter, {}}); src = TensorShape{b, 8, h, w}, filter = TensorShape{sg, sg, 8, f, f, c}; checker.exec({src, filter, {}}); } } TEST_F(CUDA, LOCAL_SHARE_FORWARD_3x3_LAR_BS) { require_compute_capability(6, 0); Checker checker(handle_cuda()); bool require_algo = false; checker.set_before_exec_callback(AlgoChecker( "LOCAL_SHARE_CHWN_BATCH_SIZE_AWARE", &require_algo)); using Param = LocalShare::Param; auto args = get_local_share_conv_3x3_args_lar_bs(); ConstValue const_1{1}; for (auto&& arg : args) { size_t b = arg.b, c = arg.c, f = arg.f, p = arg.p, s = arg.s, h = arg.h, w = arg.w, sg = arg.sg; Param param; param.stride_h = param.stride_w = s; param.pad_h = param.pad_w = p; param.spatial_groups_h = param.spatial_groups_w = sg; checker.set_param(param); TensorShape src{b, 4, h, w}, filter{sg, sg, 4, f, f, c}; checker.execs({src, filter, {}}); src = TensorShape{b, 8, h, w}, filter = TensorShape{sg, sg, 8, f, f, c}; checker.exec({src, filter, {}}); } } TEST_F(CUDA, LOCAL_SHARE_FORWARD_5x5_LAR_BS) { require_compute_capability(6, 0); Checker checker(handle_cuda()); bool require_algo = false; checker.set_before_exec_callback(AlgoChecker( "LOCAL_SHARE_CHWN_BATCH_SIZE_AWARE", &require_algo)); using Param = LocalShare::Param; auto args = get_local_share_conv_5x5_args_lar_bs(); for (auto&& arg : args) { size_t b = arg.b, c = arg.c, f = arg.f, p = arg.p, s = arg.s, h = arg.h, w = arg.w, sg = arg.sg; Param param; param.stride_h = param.stride_w = s; param.pad_h = param.pad_w = p; param.spatial_groups_h = param.spatial_groups_w = sg; checker.set_param(param); TensorShape src{b, 4, h, w}, filter{sg, sg, 4, f, f, c}; checker.execs({src, filter, {}}); src = TensorShape{b, 8, h, w}, filter = TensorShape{sg, sg, 8, f, f, c}; checker.exec({src, filter, {}}); } } TEST_F(CUDA, LOCAL_SHARE_FORWARD_7x7_LAR_BS) { require_compute_capability(6, 0); Checker checker(handle_cuda()); bool require_algo = false; checker.set_before_exec_callback(AlgoChecker( "LOCAL_SHARE_CHWN_BATCH_SIZE_AWARE", &require_algo)); using Param = LocalShare::Param; auto args = get_local_share_conv_7x7_args_lar_bs(); for (auto&& arg : args) { size_t b = arg.b, c = arg.c, f = arg.f, p = arg.p, s = arg.s, h = arg.h, w = arg.w, sg = arg.sg; Param param; param.stride_h = param.stride_w = s; param.pad_h = param.pad_w = p; param.spatial_groups_h = param.spatial_groups_w = sg; checker.set_param(param); TensorShape src{b, 4, h, w}, filter{sg, sg, 4, f, f, c}; checker.execs({src, filter, {}}); src = TensorShape{b, 8, h, w}, filter = TensorShape{sg, sg, 8, f, f, c}; checker.exec({src, filter, {}}); } } TEST_F(CUDA, LOCAL_SHARE_BATCHED_MATMUL) { Checker checker(handle_cuda()); bool require_algo = false; checker.set_before_exec_callback( AlgoChecker("LOCAL_SHARE_BATCHED_MATMUL", &require_algo)); using Param = LocalShare::Param; auto args = convolution::get_args(); for (size_t sg : {2, 3}) { for (auto&& arg : args) { if (arg.param.sparse != LocalShare::Param::Sparse::DENSE) continue; if (arg.param.format != LocalShare::Param::Format::NCHW) continue; if (arg.param.dilate_h != 1 || arg.param.dilate_w != 1) continue; Param param; param.sparse = arg.param.sparse; param.stride_h = arg.param.stride_h, param.stride_w = arg.param.stride_w; param.pad_h = arg.param.pad_h, param.pad_w = arg.param.pad_w; param.dilate_h = arg.param.dilate_h, param.dilate_w = arg.param.dilate_w; param.spatial_groups_h = param.spatial_groups_w = sg; size_t ho = infer_conv_shape( arg.src[2], arg.filter[2], param.stride_h, param.pad_h); size_t wo = infer_conv_shape( arg.src[3], arg.filter[3], param.stride_w, param.pad_w); if (ho % sg != 0 || wo % sg != 0) continue; TensorShape filter{ sg, sg, arg.filter[1], arg.filter[2], arg.filter[3], arg.filter[0]}; checker.set_param(param); checker.exec({arg.src, filter, {}}); } } } TEST_F(CUDA, GROUP_LOCAL_SHARE_BATCHED_MATMUL) { Checker checker(handle_cuda()); bool require_algo = false; checker.set_before_exec_callback( AlgoChecker("LOCAL_SHARE_BATCHED_MATMUL", &require_algo)); using Param = LocalShare::Param; auto args = convolution::get_args(); for (size_t sg : {2, 3}) { for (auto&& arg : args) { if (arg.param.sparse != LocalShare::Param::Sparse::DENSE) continue; if (arg.param.format != LocalShare::Param::Format::NCHW) continue; if (arg.param.dilate_h != 1 || arg.param.dilate_w != 1) continue; if (arg.filter.ndim != 4) continue; Param param; param.sparse = Param::Sparse::GROUP; param.stride_h = arg.param.stride_h, param.stride_w = arg.param.stride_w; param.pad_h = arg.param.pad_h, param.pad_w = arg.param.pad_w; param.dilate_h = arg.param.dilate_h, param.dilate_w = arg.param.dilate_w; param.spatial_groups_h = param.spatial_groups_w = sg; size_t ho = infer_conv_shape( arg.src[2], arg.filter[2], param.stride_h, param.pad_h); size_t wo = infer_conv_shape( arg.src[3], arg.filter[3], param.stride_w, param.pad_w); if (ho % sg != 0 || wo % sg != 0) continue; size_t nr_groups = 3; TensorShape filter{ nr_groups, sg, sg, arg.filter[1], arg.filter[2], arg.filter[3], arg.filter[0]}; TensorShape src{arg.src[0], arg.src[1] * nr_groups, arg.src[2], arg.src[3]}; checker.set_param(param); checker.exec({src, filter, {}}); } } } TEST_F(CUDA, LOCAL_SHARE_FORWARD_SMALL_IMAGE_GENERAL) { require_compute_capability(6, 0); Checker checker(handle_cuda()); bool require_algo = false; checker.set_before_exec_callback(AlgoChecker( "LOCAL_SHARE_CHWN_BATCH_SIZE_AWARE_SMALL_IMAGE", &require_algo)); using Param = LocalShare::Param; auto args = convolution::get_args(); for (size_t sg : {2, 3}) { for (auto&& arg : args) { if (arg.param.sparse != LocalShare::Param::Sparse::DENSE) continue; if (arg.param.format != LocalShare::Param::Format::NCHW) continue; if (arg.param.dilate_h != 1 || arg.param.dilate_w != 1) continue; Param param; param.stride_h = arg.param.stride_h, param.stride_w = arg.param.stride_w; param.pad_h = arg.param.pad_h, param.pad_w = arg.param.pad_w; param.dilate_h = arg.param.dilate_h, param.dilate_w = arg.param.dilate_w; param.spatial_groups_h = param.spatial_groups_w = sg; size_t ho = infer_conv_shape( arg.src[2], arg.filter[2], param.stride_h, param.pad_h); size_t wo = infer_conv_shape( arg.src[3], arg.filter[3], param.stride_w, param.pad_w); if (ho % sg != 0 || wo % sg != 0) continue; arg.filter[1] = arg.filter[1] + (4 - arg.filter[1] % 4); arg.src[1] = arg.filter[1]; TensorShape filter{ sg, sg, arg.filter[1], arg.filter[2], arg.filter[3], arg.filter[0]}; checker.set_param(param); checker.exec({arg.src, filter, {}}); } } } TEST_F(CUDA, LOCAL_SHARE_FORWARD_SMALL_IMAGE_SPECIAL) { require_compute_capability(6, 0); Checker checker(handle_cuda()); bool require_algo = false; checker.set_before_exec_callback(AlgoChecker( "LOCAL_SHARE_CHWN_BATCH_SIZE_AWARE_SMALL_IMAGE", &require_algo)); using Param = LocalShare::Param; auto args = get_local_share_conv_small_image(); for (auto&& arg : args) { size_t b = arg.b, c = arg.c, f = arg.f, p = arg.p, s = arg.s, h = arg.h, w = arg.w, sg = arg.sg; Param param; param.stride_h = param.stride_w = s; param.pad_h = param.pad_w = p; param.spatial_groups_h = param.spatial_groups_w = sg; checker.set_param(param); TensorShape src{b, 4, h, w}, filter{sg, sg, 4, f, f, c}; checker.execs({src, filter, {}}); src = TensorShape{b, 8, h, w}, filter = TensorShape{sg, sg, 8, f, f, c}; checker.exec({src, filter, {}}); } } TEST_F(CUDA, LOCAL_SHARE_BWD_DATA_IMPLICIT_GEMM_GENERAL) { require_compute_capability(6, 0); Checker checker(handle_cuda()); bool require_algo = false; checker.set_before_exec_callback(AlgoChecker( "LOCAL_SHARE_IMPLICIT_GEMM", &require_algo)); using Param = LocalShare::Param; auto args = convolution::get_args(); ConstValue const_0{0}; for (size_t sg : {2, 3}) { for (auto&& arg : args) { if (arg.param.sparse != LocalShare::Param::Sparse::DENSE) continue; if (arg.param.format != LocalShare::Param::Format::NCHW) continue; if (arg.param.dilate_h != 1 || arg.param.dilate_w != 1) continue; Param param; param.stride_h = arg.param.stride_h, param.stride_w = arg.param.stride_w; param.pad_h = arg.param.pad_h, param.pad_w = arg.param.pad_w; param.dilate_h = arg.param.dilate_h, param.dilate_w = arg.param.dilate_w; param.spatial_groups_h = param.spatial_groups_w = sg; size_t ho = infer_conv_shape( arg.src[2], arg.filter[2], param.stride_h, param.pad_h); size_t wo = infer_conv_shape( arg.src[3], arg.filter[3], param.stride_w, param.pad_w); if (ho % sg != 0 || wo % sg != 0) continue; arg.filter[0] = arg.filter[0] + (4 - arg.filter[0] % 4); TensorShape filter{ sg, sg, arg.filter[1], arg.filter[2], arg.filter[3], arg.filter[0]}; TensorShape diff{arg.src[0], arg.filter[0], ho, wo}; checker.set_param(param); checker.set_rng(2, &const_0); checker.exec({filter, diff, arg.src}); } } } TEST_F(CUDA, LOCAL_SHARE_BWD_DATA_IMPLICIT_GEMM_SPECIAL_PART1) { require_compute_capability(6, 0); test_local_share_bwd_data_implicit_gemm(3, handle_cuda()); } TEST_F(CUDA, LOCAL_SHARE_BWD_DATA_IMPLICIT_GEMM_SPECIAL_PART2) { require_compute_capability(6, 0); test_local_share_bwd_data_implicit_gemm(5, handle_cuda()); } TEST_F(CUDA, LOCAL_SHARE_BWD_DATA_IMPLICIT_GEMM_SPECIAL_PART3) { require_compute_capability(6, 0); test_local_share_bwd_data_implicit_gemm(7, handle_cuda()); } TEST_F(CUDA, LOCAL_SHARE_BWD_DATA_BATCHED_MATMUL) { Checker checker(handle_cuda()); bool require_algo = false; checker.set_before_exec_callback(AlgoChecker( "LOCAL_SHARE_BATCHED_MATMUL", &require_algo)); using Param = LocalShare::Param; auto args = convolution::get_args(); ConstValue const_0{0}; for (size_t sg : {2, 3}) { for (auto&& arg : args) { if (arg.param.sparse != LocalShare::Param::Sparse::DENSE) continue; if (arg.param.format != LocalShare::Param::Format::NCHW) continue; if (arg.param.dilate_h != 1 || arg.param.dilate_w != 1) continue; Param param; param.stride_h = arg.param.stride_h, param.stride_w = arg.param.stride_w; param.pad_h = arg.param.pad_h, param.pad_w = arg.param.pad_w; param.dilate_h = arg.param.dilate_h, param.dilate_w = arg.param.dilate_w; param.spatial_groups_h = param.spatial_groups_w = sg; size_t ho = infer_conv_shape( arg.src[2], arg.filter[2], param.stride_h, param.pad_h); size_t wo = infer_conv_shape( arg.src[3], arg.filter[3], param.stride_w, param.pad_w); if (ho % sg != 0 || wo % sg != 0) continue; TensorShape filter{ sg, sg, arg.filter[1], arg.filter[2], arg.filter[3], arg.filter[0]}; TensorShape diff{arg.src[0], arg.filter[0], ho, wo}; checker.set_rng(2, &const_0); checker.set_param(param); checker.exec({filter, diff, arg.src}); } } } TEST_F(CUDA, GROUP_LOCAL_SHARE_BWD_DATA_BATCHED_MATMUL) { Checker checker(handle_cuda()); bool require_algo = false; checker.set_before_exec_callback(AlgoChecker( "LOCAL_SHARE_BATCHED_MATMUL", &require_algo)); using Param = LocalShare::Param; auto args = convolution::get_args(); ConstValue const_0{0}; for (size_t sg : {2, 3}) { for (auto&& arg : args) { if (arg.param.sparse != LocalShare::Param::Sparse::DENSE) continue; if (arg.param.format != LocalShare::Param::Format::NCHW) continue; if (arg.param.dilate_h != 1 || arg.param.dilate_w != 1) continue; Param param; param.sparse = Param::Sparse::GROUP; param.stride_h = arg.param.stride_h, param.stride_w = arg.param.stride_w; param.pad_h = arg.param.pad_h, param.pad_w = arg.param.pad_w; param.dilate_h = arg.param.dilate_h, param.dilate_w = arg.param.dilate_w; param.spatial_groups_h = param.spatial_groups_w = sg; size_t ho = infer_conv_shape( arg.src[2], arg.filter[2], param.stride_h, param.pad_h); size_t wo = infer_conv_shape( arg.src[3], arg.filter[3], param.stride_w, param.pad_w); if (ho % sg != 0 || wo % sg != 0) continue; size_t nr_groups = 3; TensorShape filter{ nr_groups, sg, sg, arg.filter[1], arg.filter[2], arg.filter[3], arg.filter[0]}; TensorShape diff{arg.src[0], arg.filter[0] * nr_groups, ho, wo}; TensorShape grad{ arg.src[0], arg.src[1] * nr_groups, arg.src[2], arg.src[3]}; checker.set_rng(2, &const_0); checker.set_param(param); checker.exec({filter, diff, grad}); } } } TEST_F(CUDA, LOCAL_SHARE_BWD_FILTER_IMPLICIT_GEMM_GENERAL) { require_compute_capability(6, 0); Checker checker(handle_cuda()); bool require_algo = false; checker.set_before_exec_callback(AlgoChecker( "LOCAL_SHARE_IMPLICIT_GEMM", &require_algo)); using Param = LocalShare::Param; auto args = convolution::get_args(); ConstValue const_0{0}; for (size_t sg : {2, 3}) { for (auto&& arg : args) { if (arg.param.sparse != LocalShare::Param::Sparse::DENSE) continue; if (arg.param.format != LocalShare::Param::Format::NCHW) continue; if (arg.param.dilate_h != 1 || arg.param.dilate_w != 1) continue; Param param; param.stride_h = arg.param.stride_h, param.stride_w = arg.param.stride_w; param.pad_h = arg.param.pad_h, param.pad_w = arg.param.pad_w; param.dilate_h = arg.param.dilate_h, param.dilate_w = arg.param.dilate_w; param.spatial_groups_h = param.spatial_groups_w = sg; size_t ho = infer_conv_shape( arg.src[2], arg.filter[2], param.stride_h, param.pad_h); size_t wo = infer_conv_shape( arg.src[3], arg.filter[3], param.stride_w, param.pad_w); if (ho % sg != 0 || wo % sg != 0) continue; arg.src[0] = arg.src[0] + (4 - arg.src[0] % 4); TensorShape grad{ sg, sg, arg.filter[1], arg.filter[2], arg.filter[3], arg.filter[0]}; TensorShape diff{arg.src[0], arg.filter[0], ho, wo}; checker.set_param(param); checker.set_rng(2, &const_0); checker.exec({arg.src, diff, grad}); } } } TEST_F(CUDA, LOCAL_SHARE_BWD_FILTER_IMPLICIT_GEMM_SPECIAL) { require_compute_capability(6, 0); Checker checker(handle_cuda()); bool require_algo = false; checker.set_before_exec_callback(AlgoChecker( "LOCAL_SHARE_IMPLICIT_GEMM", &require_algo)); using Param = LocalShare::Param; ConstValue const_0{0}; auto args = get_local_share_conv_small_image(); for (auto&& arg : args) { static_cast(arg); size_t b = arg.b, c = arg.c, f = arg.f, p = arg.p, s = arg.s, h = arg.h, w = arg.w, sg = arg.sg; size_t ho = infer_conv_shape(h, f, s, p), wo = infer_conv_shape(w, f, s, p); Param param; param.stride_h = param.stride_w = s; param.pad_h = param.pad_w = p; param.spatial_groups_h = param.spatial_groups_w = sg; checker.set_param(param); checker.set_rng(2, &const_0); TensorShape diff{b, c, ho, wo}, grad{sg, sg, 4, f, f, c}, src{b, 4, h, w}; checker.execs({src, diff, grad}); src = {b, 8, h, w}; diff = TensorShape{b, c, ho, wo}, grad = TensorShape{sg, sg, 8, f, f, c}; checker.exec({src, diff, grad}); } } TEST_F(CUDA, LOCAL_SHARE_BWD_FILTER_BATCHED_MATMUL) { Checker checker(handle_cuda()); bool require_algo = false; checker.set_before_exec_callback(AlgoChecker( "LOCAL_SHARE_BATCHED_MATMUL", &require_algo)); using Param = LocalShare::Param; auto args = convolution::get_args(); ConstValue const_0{0}; for (size_t sg : {2, 3}) { for (auto&& arg : args) { if (arg.param.sparse != LocalShare::Param::Sparse::DENSE) continue; if (arg.param.format != LocalShare::Param::Format::NCHW) continue; if (arg.param.dilate_h != 1 || arg.param.dilate_w != 1) continue; Param param; param.stride_h = arg.param.stride_h, param.stride_w = arg.param.stride_w; param.pad_h = arg.param.pad_h, param.pad_w = arg.param.pad_w; param.dilate_h = arg.param.dilate_h, param.dilate_w = arg.param.dilate_w; param.spatial_groups_h = param.spatial_groups_w = sg; size_t ho = infer_conv_shape( arg.src[2], arg.filter[2], param.stride_h, param.pad_h); size_t wo = infer_conv_shape( arg.src[3], arg.filter[3], param.stride_w, param.pad_w); if (ho % sg != 0 || wo % sg != 0) continue; TensorShape grad{ sg, sg, arg.filter[1], arg.filter[2], arg.filter[3], arg.filter[0]}; TensorShape diff{arg.src[0], arg.filter[0], ho, wo}; checker.set_rng(2, &const_0); checker.set_param(param); checker.exec({arg.src, diff, grad}); } } } TEST_F(CUDA, GROUP_LOCAL_SHARE_BWD_FILTER_BATCHED_MATMUL) { Checker checker(handle_cuda()); bool require_algo = false; checker.set_before_exec_callback(AlgoChecker( "LOCAL_SHARE_BATCHED_MATMUL", &require_algo)); using Param = LocalShare::Param; auto args = convolution::get_args(); ConstValue const_0{0}; for (size_t sg : {2, 3}) { for (auto&& arg : args) { if (arg.param.sparse != LocalShare::Param::Sparse::DENSE) continue; if (arg.param.format != LocalShare::Param::Format::NCHW) continue; if (arg.param.dilate_h != 1 || arg.param.dilate_w != 1) continue; Param param; param.sparse = Param::Sparse::GROUP; param.stride_h = arg.param.stride_h, param.stride_w = arg.param.stride_w; param.pad_h = arg.param.pad_h, param.pad_w = arg.param.pad_w; param.dilate_h = arg.param.dilate_h, param.dilate_w = arg.param.dilate_w; param.spatial_groups_h = param.spatial_groups_w = sg; size_t ho = infer_conv_shape( arg.src[2], arg.filter[2], param.stride_h, param.pad_h); size_t wo = infer_conv_shape( arg.src[3], arg.filter[3], param.stride_w, param.pad_w); if (ho % sg != 0 || wo % sg != 0) continue; size_t nr_groups = 3; TensorShape grad{ nr_groups, sg, sg, arg.filter[1], arg.filter[2], arg.filter[3], arg.filter[0]}; TensorShape diff{arg.src[0], arg.filter[0] * nr_groups, ho, wo}; TensorShape src{arg.src[0], arg.src[1] * nr_groups, arg.src[2], arg.src[3]}; checker.set_rng(2, &const_0); checker.set_param(param); checker.exec({src, diff, grad}); } } } #if MEGDNN_WITH_BENCHMARK TEST_F(CUDA, BENCHMARK_LOCAL_SHARE_BWD_FILTER) { CUBenchmarker bencher(handle_cuda()); size_t RUNS = 1000; bencher.set_display(false).set_times(RUNS); std::unique_ptr> proxy{ new OprProxy{true}}; bencher.set_proxy(proxy); LocalShare::Param param; NormalRNG rng; auto run = [&](size_t batch, size_t ic, size_t ih, size_t iw, size_t oc, size_t f, size_t s, size_t sg) { param.pad_h = f / 2; param.pad_w = f / 2; param.stride_h = s; param.stride_w = s; param.spatial_groups_h = sg; param.spatial_groups_w = sg; TensorShape src = {batch, ic, ih, iw}, grad = {sg, sg, ic, f, f, oc}; size_t ho = infer_conv_shape(ih, f, s, f / 2); size_t wo = infer_conv_shape(iw, f, s, f / 2); TensorShape diff = {batch, oc, ho, wo}; float flo = 2.0 * batch * oc * ho * wo * ic * f * f / (1e12); bencher.set_param(param) .set_dtype(0, dtype::Float32()) .set_dtype(1, dtype::Float32()) .set_dtype(2, dtype::Float32()) .set_rng(0, &rng) .set_rng(1, &rng); bencher.proxy()->target_execution_policy.algo.reset(); auto time_in_ms = bencher.execs({src, diff, grad}) / RUNS; printf("src=%s, diff=%s, grad=%s, float32: %.2fms " "%.2fTFlops\n", src.to_string().c_str(), diff.to_string().c_str(), grad.to_string().c_str(), time_in_ms, (flo / (time_in_ms * 1e-3))); }; // stride = 1 run(32, 128, 24, 24, 128, 1, 1, 3); run(32, 256, 12, 12, 256, 1, 1, 3); // stride = 2 run(32, 256, 12, 12, 512, 1, 2, 3); run(32, 512, 6, 6, 1024, 1, 2, 3); // stride = 1 run(32, 128, 24, 24, 128, 3, 1, 3); run(32, 256, 12, 12, 256, 3, 1, 3); // stride = 2 run(32, 128, 24, 24, 256, 3, 2, 3); run(32, 256, 12, 12, 512, 3, 2, 3); // stride = 1 run(64, 128, 24, 24, 128, 1, 1, 3); run(64, 256, 12, 12, 256, 1, 1, 3); // stride = 2 run(64, 256, 12, 12, 512, 1, 2, 3); run(64, 512, 6, 6, 1024, 1, 2, 3); // stride = 1 run(64, 128, 24, 24, 128, 3, 1, 3); run(64, 256, 12, 12, 256, 3, 1, 3); // stride = 2 run(64, 128, 24, 24, 256, 3, 2, 3); run(64, 256, 12, 12, 512, 3, 2, 3); } TEST_F(CUDA, BENCHMARK_GROUP_LOCAL_SHARE_FORWARD) { CUBenchmarker bencher(handle_cuda()); size_t RUNS = 1000; bencher.set_display(false).set_times(RUNS); std::unique_ptr> proxy{ new OprProxy{true}}; bencher.set_proxy(proxy); LocalShare::Param param; NormalRNG rng; auto run = [&](size_t batch, size_t ic, size_t ih, size_t iw, size_t oc, size_t f, size_t s, size_t sg) { param.pad_h = f / 2; param.pad_w = f / 2; param.stride_h = s; param.stride_w = s; param.spatial_groups_h = sg; param.spatial_groups_w = sg; param.sparse = LocalShare::Param::Sparse::GROUP; TensorShape src = {1, batch * ic, ih, iw}, filter = {batch, sg, sg, ic, f, f, oc}; size_t ho = infer_conv_shape(ih, f, s, f / 2); size_t wo = infer_conv_shape(iw, f, s, f / 2); float flo = 2.0 * batch * oc * ho * wo * ic * f * f / (1e12); bencher.set_param(param) .set_dtype(0, dtype::Float32()) .set_dtype(1, dtype::Float32()) .set_dtype(2, dtype::Float32()) .set_rng(0, &rng) .set_rng(1, &rng); bencher.proxy()->target_execution_policy.algo.reset(); auto time_in_ms = bencher.execs({src, filter, {}}) / RUNS; ; printf("src=%s, filter=%s, float32: %.2fms %.2fTFlops\n", src.to_string().c_str(), filter.to_string().c_str(), time_in_ms, (flo / (time_in_ms * 1e-3))); }; // stride = 1 run(32, 128, 24, 24, 128, 1, 1, 3); run(32, 256, 12, 12, 256, 1, 1, 3); // stride = 2 run(32, 256, 12, 12, 512, 1, 2, 3); run(32, 512, 6, 6, 1024, 1, 2, 3); // stride = 1 run(64, 128, 24, 24, 128, 1, 1, 3); run(64, 256, 12, 12, 256, 1, 1, 3); // stride = 2 run(64, 256, 12, 12, 512, 1, 2, 3); run(64, 512, 6, 6, 1024, 1, 2, 3); } TEST_F(CUDA, BENCHMARK_LOCAL_SHARE_BWD_DATA) { CUBenchmarker bencher(handle_cuda()); size_t RUNS = 1000; bencher.set_display(false).set_times(RUNS); std::unique_ptr> proxy{ new OprProxy{true}}; bencher.set_proxy(proxy); LocalShare::Param param; NormalRNG rng; auto run = [&](size_t batch, size_t ic, size_t ih, size_t iw, size_t oc, size_t f, size_t s, size_t sg) { param.pad_h = f / 2; param.pad_w = f / 2; param.stride_h = s; param.stride_w = s; param.spatial_groups_h = sg; param.spatial_groups_w = sg; TensorShape grad = {batch, ic, ih, iw}, filter = {sg, sg, ic, f, f, oc}; size_t ho = infer_conv_shape(ih, f, s, f / 2); size_t wo = infer_conv_shape(iw, f, s, f / 2); TensorShape diff = {batch, oc, ho, wo}; float flo = 2.0 * batch * oc * ho * wo * ic * f * f / (1e12); bencher.set_param(param) .set_dtype(0, dtype::Float32()) .set_dtype(1, dtype::Float32()) .set_dtype(2, dtype::Float32()) .set_rng(0, &rng) .set_rng(1, &rng); bencher.proxy()->target_execution_policy.algo.reset(); auto time_in_ms = bencher.execs({filter, diff, grad}) / RUNS; printf("filter=%s, diff=%s, grad=%s, float32: %.2fms " "%.2fTFlops\n", filter.to_string().c_str(), diff.to_string().c_str(), grad.to_string().c_str(), time_in_ms, (flo / (time_in_ms * 1e-3))); }; // stride = 1 run(32, 128, 24, 24, 128, 1, 1, 3); run(32, 256, 12, 12, 256, 1, 1, 3); // stride = 2 run(32, 256, 12, 12, 512, 1, 2, 3); run(32, 512, 6, 6, 1024, 1, 2, 3); // stride = 1 run(32, 128, 24, 24, 128, 3, 1, 3); run(32, 256, 12, 12, 256, 3, 1, 3); // stride = 2 run(32, 128, 24, 24, 256, 3, 2, 3); run(32, 256, 12, 12, 512, 3, 2, 3); // stride = 1 run(64, 128, 24, 24, 128, 1, 1, 3); run(64, 256, 12, 12, 256, 1, 1, 3); // stride = 2 run(64, 256, 12, 12, 512, 1, 2, 3); run(64, 512, 6, 6, 1024, 1, 2, 3); // stride = 1 run(64, 128, 24, 24, 128, 3, 1, 3); run(64, 256, 12, 12, 256, 3, 1, 3); // stride = 2 run(64, 128, 24, 24, 256, 3, 2, 3); run(64, 256, 12, 12, 512, 3, 2, 3); } TEST_F(CUDA, BENCHMARK_LOCAL_SHARE_FORWARD_BOTTLENECK) { CUBenchmarker bencher(handle_cuda()); CUBenchmarker bencher_conv(handle_cuda()); size_t RUNS = 1000; bencher.set_display(false).set_times(RUNS); std::unique_ptr> proxy{ new OprProxy{true}}; bencher.set_proxy(proxy); bencher_conv.set_display(false).set_times(RUNS); std::unique_ptr> conv_proxy{new OprProxy{true}}; bencher_conv.set_proxy(conv_proxy); LocalShare::Param param; Convolution::Param conv_param; NormalRNG rng; auto run = [&](size_t batch, size_t ic, size_t ih, size_t iw, size_t oc, size_t f, size_t s, size_t sg) { param.pad_h = f / 2; param.pad_w = f / 2; param.stride_h = s; param.stride_w = s; param.spatial_groups_h = sg; param.spatial_groups_w = sg; conv_param.pad_h = f / 2; conv_param.pad_w = f / 2; conv_param.stride_h = s; conv_param.stride_w = s; TensorShape src = {batch, ic, ih, iw}, filter = {sg, sg, ic, f, f, oc}; size_t ho = infer_conv_shape(ih, f, s, f / 2); size_t wo = infer_conv_shape(iw, f, s, f / 2); float flo = 2.0 * batch * oc * ho * wo * ic * f * f / (1e12); bencher.set_param(param) .set_dtype(0, dtype::Float32()) .set_dtype(1, dtype::Float32()) .set_dtype(2, dtype::Float32()) .set_rng(0, &rng) .set_rng(1, &rng); bencher.proxy()->target_execution_policy.algo.reset(); auto time_in_ms = bencher.execs({src, filter, {}}) / RUNS; bencher_conv.set_param(conv_param); bencher_conv.proxy()->target_execution_policy.algo.reset(); auto time_in_ms_conv = bencher_conv.execs({src, {oc, ic, f, f}, {}}) / RUNS; printf("src=%s, filter=%s, float32: %.2fms %.2fTFlops, " "conv(float32): %.2fms %.2fTFlops, local_share/conv=%.2f\n", src.to_string().c_str(), filter.to_string().c_str(), time_in_ms, (flo / (time_in_ms * 1e-3)), time_in_ms_conv, (flo / (time_in_ms_conv * 1e-3)), time_in_ms / time_in_ms_conv); }; // stride = 1 run(32, 128, 24, 24, 128, 1, 1, 3); run(32, 256, 12, 12, 256, 1, 1, 3); // stride = 2 run(32, 256, 12, 12, 512, 1, 2, 3); run(32, 512, 6, 6, 1024, 1, 2, 3); // stride = 1 run(32, 128, 24, 24, 128, 3, 1, 3); run(32, 256, 12, 12, 256, 3, 1, 3); // stride = 2 run(32, 128, 24, 24, 256, 3, 2, 3); run(32, 256, 12, 12, 512, 3, 2, 3); // stride = 1 run(64, 128, 24, 24, 128, 1, 1, 3); run(64, 256, 12, 12, 256, 1, 1, 3); // stride = 2 run(64, 256, 12, 12, 512, 1, 2, 3); run(64, 512, 6, 6, 1024, 1, 2, 3); // stride = 1 run(64, 128, 24, 24, 128, 3, 1, 3); run(64, 256, 12, 12, 256, 3, 1, 3); // stride = 2 run(64, 128, 24, 24, 256, 3, 2, 3); run(64, 256, 12, 12, 512, 3, 2, 3); } TEST_F(CUDA, BENCHMARK_LOCAL_SHARE_FORWARD_FROM_RESEARCH) { CUBenchmarker bencher(handle_cuda()); CUBenchmarker bencher_conv(handle_cuda()); size_t RUNS = 1000; bencher.set_display(false).set_times(RUNS); std::unique_ptr> proxy{ new OprProxy{true}}; bencher.set_proxy(proxy); bencher_conv.set_display(false).set_times(RUNS); std::unique_ptr> conv_proxy{new OprProxy{true}}; bencher_conv.set_proxy(conv_proxy); LocalShare::Param param; Convolution::Param conv_param; NormalRNG rng; auto run = [&](size_t batch, size_t ic, size_t ih, size_t iw, size_t oc, size_t f, size_t s, size_t sg) { param.pad_h = f / 2; param.pad_w = f / 2; param.stride_h = s; param.stride_w = s; param.spatial_groups_h = sg; param.spatial_groups_w = sg; conv_param.pad_h = f / 2; conv_param.pad_w = f / 2; conv_param.stride_h = s; conv_param.stride_w = s; TensorShape src = {batch, ic, ih, iw}, filter = {sg, sg, ic, f, f, oc}; size_t ho = infer_conv_shape(ih, f, s, f / 2); size_t wo = infer_conv_shape(iw, f, s, f / 2); float flo = 2.0 * batch * oc * ho * wo * ic * f * f / (1e12); bencher.set_param(param) .set_dtype(0, dtype::Float32()) .set_dtype(1, dtype::Float32()) .set_dtype(2, dtype::Float32()) .set_rng(0, &rng) .set_rng(1, &rng); bencher.proxy()->target_execution_policy.algo.reset(); auto time_in_ms = bencher.execs({src, filter, {}}) / RUNS; bencher_conv.set_param(conv_param); bencher_conv.proxy()->target_execution_policy.algo.reset(); auto time_in_ms_conv = bencher_conv.execs({src, {oc, ic, f, f}, {}}) / RUNS; printf("src=%s, filter=%s, float32: %.2fms %.2fTFlops, " "conv(float32): %.2fms %.2fTFlops, local_share/conv=%.2f\n", src.to_string().c_str(), filter.to_string().c_str(), time_in_ms, (flo / (time_in_ms * 1e-3)), time_in_ms_conv, (flo / (time_in_ms_conv * 1e-3)), time_in_ms / time_in_ms_conv); }; // stride = 1 run(64, 128, 24, 24, 128, 1, 1, 3); run(64, 256, 12, 12, 256, 1, 1, 3); run(64, 512, 6, 6, 512, 1, 1, 3); run(64, 1024, 3, 3, 1024, 1, 1, 3); // stride = 2 run(64, 128, 24, 24, 256, 1, 2, 3); run(64, 256, 12, 12, 512, 1, 2, 3); run(64, 512, 6, 6, 1024, 1, 2, 3); // stride = 1 run(64, 128, 24, 24, 128, 3, 1, 3); run(64, 256, 12, 12, 256, 3, 1, 3); run(64, 512, 6, 6, 512, 3, 1, 3); run(64, 1024, 3, 3, 1024, 3, 1, 3); // stride = 2 run(64, 128, 24, 24, 256, 3, 2, 3); run(64, 256, 12, 12, 512, 3, 2, 3); run(64, 512, 6, 6, 1024, 3, 2, 3); } TEST_F(CUDA, BENCHMARK_LOCAL_SHARE_FORWARD) { require_compute_capability(6, 0); CUBenchmarker bencher(handle_cuda()); CUBenchmarker bencher_conv(handle_cuda()); size_t RUNS = 200; bencher.set_display(false).set_times(RUNS); std::unique_ptr> proxy{ new OprProxy{true}}; bencher.set_proxy(proxy); bencher_conv.set_display(false).set_times(RUNS); std::unique_ptr> conv_proxy{new OprProxy{true}}; bencher_conv.set_proxy(conv_proxy); LocalShare::Param param; Convolution::Param conv_param; NormalRNG rng; auto run = [&](size_t batch, size_t ic, size_t ih, size_t iw, size_t oc, size_t f, size_t s, size_t sg) { param.pad_h = f / 2; param.pad_w = f / 2; param.stride_h = s; param.stride_w = s; param.spatial_groups_h = sg; param.spatial_groups_w = sg; conv_param.pad_h = f / 2; conv_param.pad_w = f / 2; conv_param.stride_h = s; conv_param.stride_w = s; TensorShape src = {batch, ic, ih, iw}, filter = {sg, sg, ic, f, f, oc}; size_t ho = infer_conv_shape(ih, f, s, f / 2); size_t wo = infer_conv_shape(iw, f, s, f / 2); float flo = 2.0 * batch * oc * ho * wo * ic * f * f / (1e12); bencher.set_param(param) .set_dtype(0, dtype::Float32()) .set_dtype(1, dtype::Float32()) .set_dtype(2, dtype::Float32()) .set_rng(0, &rng) .set_rng(1, &rng); bencher.proxy()->target_execution_policy.algo.reset(); auto time_in_ms = bencher.execs({src, filter, {}}) / RUNS; bencher_conv.set_param(conv_param); bencher_conv.proxy()->target_execution_policy.algo.reset(); auto time_in_ms_conv = bencher_conv.execs({src, {oc, ic, f, f}, {}}) / RUNS; printf("src=%s, filter=%s, float32: %.2fms %.2fTFlops, " "conv(float32): %.2fms %.2fTFlops, local_share/conv=%.2f\n", src.to_string().c_str(), filter.to_string().c_str(), time_in_ms, (flo / (time_in_ms * 1e-3)), time_in_ms_conv, (flo / (time_in_ms_conv * 1e-3)), time_in_ms / time_in_ms_conv); }; run(64, 256, 48, 48, 256, 7, 1, 3); run(64, 128, 24, 24, 128, 7, 1, 3); run(64, 256, 12, 12, 256, 7, 1, 3); run(64, 512, 6, 6, 512, 7, 1, 3); run(64, 256, 48, 48, 256, 5, 1, 3); run(64, 128, 24, 24, 128, 5, 1, 3); run(64, 256, 12, 12, 256, 5, 1, 3); run(64, 512, 6, 6, 512, 5, 1, 3); run(32, 64, 96, 96, 256, 7, 2, 3); run(32, 128, 24, 24, 128, 7, 2, 3); run(32, 256, 12, 12, 256, 7, 2, 3); run(32, 64, 96, 96, 256, 5, 2, 3); run(32, 128, 24, 24, 128, 5, 2, 3); run(32, 256, 12, 12, 256, 5, 2, 3); } #endif // vim: syntax=cpp.doxygen