/** * \file dnn/test/cuda/resize.cpp * MegEngine is Licensed under the Apache License, Version 2.0 (the "License") * * Copyright (c) 2014-2021 Megvii Inc. All rights reserved. * * Unless required by applicable law or agreed to in writing, * software distributed under the License is distributed on an * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. */ #include "test/common/resize.h" #include "src/common/cv/enums.h" #include "test/common/benchmarker.h" #include "test/common/checker.h" #include "test/cuda/fixture.h" namespace megdnn { namespace test { namespace resize { TEST_F(CUDA, RESIZE_CV) { using namespace resize; std::vector args = get_cv_args(); Checker checker(handle_cuda()); for (auto&& arg : args) { checker.set_param(arg.param) .set_dtype(0, dtype::Uint8()) .set_dtype(1, dtype::Uint8()) .set_epsilon(1) .set_max_avg_error(0.4) .execs({arg.src, arg.dst}); } for (auto&& arg : args) { checker.set_param(arg.param) .set_dtype(0, dtype::Float32()) .set_dtype(1, dtype::Float32()) .set_epsilon(1e-3) .execs({arg.src, arg.dst}); } } TEST_F(CUDA, RESIZE_FORWARD) { using namespace resize; IMode modes[] = {IMode::INTER_LINEAR, IMode::NEAREST, IMode::INTER_CUBIC}; for (auto imode : modes) { std::vector args = get_args(imode); Checker checker(handle_cuda()); for (auto&& arg : args) { checker.set_param(arg.param) .set_dtype(0, dtype::Uint8()) .set_dtype(1, dtype::Uint8()) .set_epsilon(1) .execs({arg.src, arg.dst}); } for (auto&& arg : args) { checker.set_param(arg.param) .set_dtype(0, dtype::Float32()) .set_dtype(1, dtype::Float32()) .set_epsilon(1e-3) .execs({arg.src, arg.dst}); } for (auto&& arg : args) { checker.set_param(arg.param) .set_dtype(0, dtype::Int8()) .set_dtype(1, dtype::Int8()) .set_epsilon(1) .execs({arg.src, arg.dst}); } } } TEST_F(CUDA, RESIZE_NCHW4) { using namespace resize; Checker checker(handle_cuda()); auto args = get_nchw4_args(); for (auto&& arg : args) { checker.set_param(arg.param) .set_dtype(0, dtype::QuantizedS8(0.1f)) .set_dtype(1, dtype::QuantizedS8(0.1f)) .set_epsilon(1 + 1e-3) .execs({arg.src, arg.dst}); } } TEST_F(CUDA, RESIZE_NCHW_WITH_STRIDE) { IMode modes[] = {IMode::INTER_LINEAR, IMode::NEAREST, IMode::INTER_CUBIC}; for (auto imode : modes) { param::Resize param; param.format = param::Resize::Format::NCHW; param.imode = imode; Checker checker(handle_cuda()); checker.set_epsilon(1 + 1e-3).set_param(param); auto run = [&](TensorShape src_shape, std::vector src_layout, TensorShape dst_shape, DType dtype) { checker.set_dtype(0, dtype).set_dtype(1, dtype).execl( {{src_shape, src_layout, dtype}, {dst_shape, dtype}}); }; for (DType& dtype : std::vector{dtype::Float32(), dtype::Uint8(), dtype::Int8()}) { run({2, 3, 4, 4}, {256, 32, 8, 1}, {2, 3, 3, 3}, dtype); run({1, 3, 4, 3}, {105, 35, 7, 2}, {1, 3, 5, 5}, dtype); run({1, 3, 40, 40}, {25600, 3200, 80, 1}, {1, 3, 30, 30}, dtype); run({2, 3, 4, 4}, {-256, 32, -8, 1}, {2, 3, 3, 3}, dtype); run({2, 3, 4, 4}, {256, -32, 8, -1}, {2, 3, 3, 3}, dtype); run({2, 3, 4, 4}, {-256, -32, -8, -1}, {2, 3, 3, 3}, dtype); } } } TEST_F(CUDA, RESIZE_BACKWARD) { IMode modes[] = {IMode::INTER_LINEAR, IMode::NEAREST, IMode::INTER_CUBIC}; for (auto imode : modes) { Checker checker(handle_cuda()); param::Resize param; param.format = param::Resize::Format::NCHW; param.imode = imode; checker.set_param(param); checker.execs({{2, 3, 4, 5}, {2, 3, 8, 9}}); checker.execs({{2, 5, 8, 9}, {2, 5, 4, 5}}); checker.execs({{2, 5, 8, 5}, {2, 5, 4, 9}}); checker.execs({{2, 5, 4, 9}, {2, 5, 8, 5}}); } } #if MEGDNN_WITH_BENCHMARK TEST_F(CUDA, BENCHMARK_RESIZE_CV) { Benchmarker benchmarker(handle_cuda()); param::Resize param; param.format = param::Resize::Format::NHWC; param.imode = param::Resize::InterpolationMode::LANCZOS4; benchmarker.set_param(param); benchmarker.set_display(false); auto run = [&benchmarker](const TensorShape& src, const TensorShape& dst) { auto used = benchmarker.execs({src, dst}); //! bandwith: each dst elem require 4 read and 1 write //! gflops: each dst elem require 4 mul + 3 add printf("run %s->%s used: %f ms %f GBPS %f Gflops\n", src.to_string().c_str(), dst.to_string().c_str(), used, dst.total_nr_elems() * (4.f + 1.f) * sizeof(float) / (1024 * 1024 * 1024) / used * 1e3, dst.total_nr_elems() * (4.f + 3.f) / (1024 * 1024 * 1024) / used * 1e3); }; run({1, 128, 128, 3}, {1, 256, 256, 3}); } TEST_F(CUDA, BENCHMARK_RESIZE_FORWARD) { Benchmarker benchmarker(handle_cuda()); param::Resize param; param.format = param::Resize::Format::NCHW; param.imode = param::Resize::InterpolationMode::LINEAR; benchmarker.set_param(param); benchmarker.set_display(false); auto run = [&benchmarker](const TensorShape& src, const TensorShape& dst) { auto used = benchmarker.execs({src, dst}); //! bandwith: each dst elem require 4 read and 1 write //! gflops: each dst elem require 4 mul + 3 add printf("run %s->%s used: %f ms %f GBPS %f Gflops\n", src.to_string().c_str(), dst.to_string().c_str(), used, dst.total_nr_elems() * (4.f + 1.f) * sizeof(float) / (1024 * 1024 * 1024) / used * 1e3, dst.total_nr_elems() * (4.f + 3.f) / (1024 * 1024 * 1024) / used * 1e3); }; run({1, 100, 256, 256}, {1, 100, 256, 5120}); run({1, 100, 256, 5120}, {1, 100, 256, 256}); run({1, 100, 256, 256}, {1, 100, 512, 512}); run({1, 100, 512, 512}, {1, 100, 256, 256}); } TEST_F(CUDA, BENCHMARK_RESIZE_FORWARD_NCHW4) { Benchmarker benchmarker(handle_cuda()); param::Resize param; param.imode = param::Resize::InterpolationMode::LINEAR; benchmarker.set_display(false); auto run = [&benchmarker](const TensorShape& src, const TensorShape& dst) { auto used = benchmarker.execs({src, dst}); //! bandwith: each dst elem require 4 read and 1 write //! gflops: each dst elem require 4 mul + 3 add printf("run %s->%s used: %f ms %f GBPS %f Gflops\n", src.to_string().c_str(), dst.to_string().c_str(), used, dst.total_nr_elems() * (4.f + 1.f) / (1024 * 1024 * 1024) / used * 1e3, dst.total_nr_elems() * (4.f + 3.f) / (1024 * 1024 * 1024) / used * 1e3); }; param.format = param::Resize::Format::NCHW; benchmarker.set_param(param); benchmarker.set_dtype(0, dtype::Int8()); benchmarker.set_dtype(1, dtype::Int8()); run({1, 100, 256, 256}, {1, 100, 256, 5120}); run({1, 100, 256, 5120}, {1, 100, 256, 256}); run({1, 100, 256, 256}, {1, 100, 512, 512}); run({1, 100, 512, 512}, {1, 100, 256, 256}); param.format = param::Resize::Format::NCHW4; benchmarker.set_param(param); benchmarker.set_dtype(0, dtype::QuantizedS8(1.0f)); benchmarker.set_dtype(1, dtype::QuantizedS8(1.0f)); run({1, 25, 256, 256, 4}, {1, 25, 256, 5120, 4}); run({1, 25, 256, 5120, 4}, {1, 25, 256, 256, 4}); run({1, 25, 256, 256, 4}, {1, 25, 512, 512, 4}); run({1, 25, 512, 512, 4}, {1, 25, 256, 256, 4}); } TEST_F(CUDA, BENCHMARK_RESIZE_BACKWARD) { Benchmarker benchmarker(handle_cuda()); param::Resize param; param.format = param::Resize::Format::NCHW; param.imode = param::Resize::InterpolationMode::LINEAR; benchmarker.set_param(param); benchmarker.set_display(false); const size_t RUNS = 5; benchmarker.set_times(RUNS); auto run = [&benchmarker](const TensorShape& diff, const TensorShape& grad) { auto used = benchmarker.execs({diff, grad}); used /= RUNS; //! bandwith: each dst elem require 1 read and 4 write //! gflops: each dst elem require 4 add printf("run %s<-%s used: %f ms %f GBPS %f Gflops\n", diff.to_string().c_str(), grad.to_string().c_str(), used, diff.total_nr_elems() * (4.f + 1.f) * sizeof(float) / (1024 * 1024 * 1024) / used * 1e3, diff.total_nr_elems() * 4.f / (1024 * 1024 * 1024) / used * 1e3); }; run({1, 100, 256, 256}, {1, 100, 256, 5120}); run({1, 100, 256, 5120}, {1, 100, 256, 256}); run({1, 100, 256, 256}, {1, 100, 512, 512}); run({1, 100, 512, 512}, {1, 100, 256, 256}); } #endif } // namespace resize } // namespace test } // namespace megdnn // vim: syntax=cpp.doxygen