/** * \file dnn/test/naive/matrix_mul.cpp * MegEngine is Licensed under the Apache License, Version 2.0 (the "License") * * Copyright (c) 2014-2021 Megvii Inc. All rights reserved. * * Unless required by applicable law or agreed to in writing, * software distributed under the License is distributed on an * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. */ #include "test/naive/fixture.h" #include "megdnn/oprs/linalg.h" #include "test/common/checker.h" #include "test/common/extra_impl_helper.h" #include "test/common/matrix_mul.h" #include "test/common/random_state.h" using namespace megdnn; using namespace test; namespace { void run_matmul_mk_format( Handle* handle, param::MatrixMul::Format format, DType Atype, DType Btype, DType Ctype) { using namespace matrix_mul; std::vector args = get_matmul_args(); Checker checker(handle); auto extra_impl = [](const TensorNDArray& tensors, param::MatrixMul param, Handle* handle, size_t pack_size) { megdnn_assert( (param.format == param::MatrixMul::Format::MK4 || param.format == param::MatrixMul::Format::MK4_DOT || param.format == param::MatrixMul::Format::MK8) && tensors.size() == 3); param::MatrixMul new_param = param; new_param.format = param::MatrixMul::Format::DEFAULT; size_t M = tensors[2].layout[0] * pack_size; size_t N = tensors[2].layout[1]; size_t K = tensors[0].layout[1 - param.transposeA] * pack_size; TensorLayoutArray default_layouts, mk4_layouts; if (param.transposeA) { default_layouts.emplace_back(tensors[0].layout.reshape({K, M})); if (param.format == param::MatrixMul::Format::MK4_DOT) { mk4_layouts.emplace_back(default_layouts.back() .reshape( {K / pack_size, M / pack_size, pack_size, pack_size}) .dimshuffle({0, 3, 1, 2})); } else { mk4_layouts.emplace_back(default_layouts.back() .reshape( {K / pack_size, M / pack_size, pack_size, pack_size}) .dimshuffle({0, 2, 1, 3})); } } else { default_layouts.emplace_back(tensors[0].layout.reshape({M, K})); if (param.format == param::MatrixMul::Format::MK4_DOT) { mk4_layouts.emplace_back(default_layouts.back() .reshape( {M / pack_size, K / pack_size, pack_size, pack_size}) .dimshuffle({0, 2, 1, 3})); } else { mk4_layouts.emplace_back(default_layouts.back() .reshape( {M / pack_size, K / pack_size, pack_size, pack_size}) .dimshuffle({0, 3, 1, 2})); } } if (param.transposeB) { default_layouts.emplace_back(tensors[1].layout.reshape({N, K})); mk4_layouts.emplace_back(default_layouts.back() .reshape({N, K / pack_size, pack_size}) .dimshuffle({0, 1, 2})); } else { default_layouts.emplace_back(tensors[1].layout.reshape({K, N})); mk4_layouts.emplace_back(default_layouts.back() .reshape({K / pack_size, N, pack_size}) .dimshuffle({0, 2, 1})); } default_layouts.emplace_back(tensors[2].layout.reshape({M, N})); mk4_layouts.emplace_back(default_layouts.back() .reshape({M / pack_size, N, pack_size}) .dimshuffle({0, 2, 1})); auto matmul_opr = handle->create_operator(); matmul_opr->param() = new_param; size_t matmul_workspace = matmul_opr->get_workspace_in_bytes( default_layouts[0], default_layouts[1], default_layouts[2]); auto relayout_opr = handle->create_operator(); WorkspaceBundle wb( nullptr, {default_layouts[0].span().dist_byte(), default_layouts[1].span().dist_byte(), default_layouts[2].span().dist_byte(), matmul_workspace}); wb.set(malloc(wb.total_size_in_bytes())); TensorNDArray default_tensors, mk4_tensors; for (size_t i = 0; i < 3; i++) { default_tensors.emplace_back(wb.get(i), default_layouts[i]); mk4_tensors.emplace_back(tensors[i].raw_ptr(), mk4_layouts[i]); } relayout_opr->exec(mk4_tensors[0], default_tensors[0]); relayout_opr->exec(mk4_tensors[1], default_tensors[1]); matmul_opr->exec( default_tensors[0], default_tensors[1], default_tensors[2], wb.get_workspace(3)); relayout_opr->exec(default_tensors[2], mk4_tensors[2]); free(wb.ptr()); }; size_t pack_size = MatrixMulForward::pack_size(format); for (auto&& arg : args) { if (arg.m % pack_size != 0 || arg.k % pack_size != 0) continue; param::MatrixMul param; param.transposeA = arg.mask & 0x1; param.transposeB = arg.mask & 0x2; param.format = format; size_t m = arg.m, n = arg.n, k = arg.k; TensorShape A, B; if (param.transposeA) { A = TensorShape{k / pack_size, m / pack_size, pack_size, pack_size}; } else { A = TensorShape{m / pack_size, k / pack_size, pack_size, pack_size}; } if (param.transposeB) { B = TensorShape{n, k / pack_size, pack_size}; } else { B = TensorShape{k / pack_size, n, pack_size}; } checker.set_extra_opr_impl( std::bind(extra_impl, std::placeholders::_1, param, handle, pack_size)); checker.set_dtype(0, Atype) .set_dtype(1, Btype) .set_dtype(2, Ctype) .set_epsilon(1e-3) .set_param(param) .execs({A, B, {}}); } } } // namespace TEST_F(NAIVE, MATRIX_MUL_QUANTIZED4x4x32) { Checker checker(handle(), /* check_dispatch */ false); auto GenTensorValueQuint4 = [](const TensorShape& shape, dtype::Quantized4Asymm dtype, const std::vector& values) { TensorND tensor; tensor.layout = {shape, dtype}; tensor.reset_ptr( static_cast(malloc(tensor.layout.span().dist_byte()))); uint8_t* ptr = static_cast(tensor.raw_ptr()); megdnn_assert(values.size() == tensor.layout.span().dist_elem()); for (size_t i = 0; i < tensor.layout.span().dist_elem(); i += 2) { int val0 = values[i], val1 = values[i + 1]; ptr[i / 2] = val0 | (val1 << 4); } return tensor; }; using Param = MatrixMul::Param; Param param; checker.set_param(param); checker.set_dtype(2, dtype::QuantizedS32(0.3f * 0.3f)); checker.exect( Testcase{ GenTensorValueQuint4( {8, 8}, dtype::Quantized4Asymm(0.3f, (uint8_t)8), {13, 2, 4, 13, 9, 3, 14, 14, 14, 5, 3, 3, 15, 11, 8, 8, 5, 7, 14, 15, 8, 2, 11, 1, 15, 9, 13, 14, 2, 3, 11, 11, 15, 10, 11, 0, 13, 12, 3, 11, 9, 9, 10, 5, 2, 5, 8, 4, 6, 9, 0, 0, 3, 9, 9, 8, 8, 15, 7, 5, 0, 3, 9, 10}), GenTensorValueQuint4( {8, 8}, dtype::Quantized4Asymm(0.3f, (uint8_t)8), {5, 14, 13, 11, 4, 7, 12, 12, 11, 7, 13, 10, 5, 6, 4, 2, 3, 12, 2, 2, 13, 3, 14, 0, 15, 15, 0, 2, 2, 13, 3, 14, 10, 8, 9, 11, 0, 14, 15, 4, 14, 7, 1, 6, 13, 2, 12, 5, 2, 15, 7, 11, 13, 9, 8, 10, 0, 11, 6, 10, 12, 2, 2, 12}), {}}, Testcase{ {}, {}, TensorValue( {8, 8}, dtype::QuantizedS32(0.3f * 0.3f), {-90, 120, -3, 40, -31, 58, -54, 165, -5, -19, 71, 87, -51, 24, 92, 15, 27, 62, -59, -82, -40, 91, 11, -16, -85, 138, -18, -36, 8, -25, -56, 75, -46, -34, 67, 53, -4, -83, 111, -86, -29, -17, 45, -9, 38, -22, -3, -19, -17, -95, 94, 78, 63, -35, -51, 21, -63, -14, 87, 31, 44, -53, -107, 5}), }); } TEST_F(NAIVE, MATRIX_MUL_QUANTIZEDS4_4x4x16) { Checker checker(handle(), /* check_dispatch */ false); auto GenTensorValueQuint4 = [](const TensorShape& shape, dtype::QuantizedS4 dtype, const std::vector& values) { TensorND tensor; tensor.layout = {shape, dtype}; tensor.reset_ptr( static_cast(malloc(tensor.layout.span().dist_byte()))); uint8_t* ptr = static_cast(tensor.raw_ptr()); megdnn_assert(values.size() == tensor.layout.span().dist_elem()); for (size_t i = 0; i < tensor.layout.span().dist_elem(); i += 2) { int val0 = values[i], val1 = values[i + 1]; ptr[i / 2] = (val0 & 0xF) | (val1 << 4); } return tensor; }; using Param = MatrixMul::Param; Param param; checker.set_param(param); checker.set_dtype(2, dtype::QuantizedS16(0.3f * 0.3f)); checker.exect( Testcase{ GenTensorValueQuint4( {8, 8}, dtype::QuantizedS4(0.3f), {-8, 7, 2, 1, 2, 3, 2, 7, 2, 5, 3, 3, 7, 4, -7, 1, -5, 7, -4, -1, -1, 2, 4, 1, 7, 2, -6, -2, -6, 3, 4, 4, -2, 2, 3, 0, 6, 5, 3, 4, -1, -1, -5, 5, 2, 5, 1, 4, 6, 2, 0, 0, 3, 2, 2, 1, -4, -3, 7, 5, 0, 3, 2, 3}), GenTensorValueQuint4( {8, 8}, dtype::QuantizedS4(0.3f), {5, -8, -7, -6, 4, 7, -5, -5, -4, 7, -3, -2, 5, 6, 4, 2, 3, -1, 2, 2, 7, 3, 6, 0, 5, 4, 0, 2, 2, 3, 3, 2, 1, -8, -7, -6, 0, -5, -4, 4, -3, 7, 1, 6, -2, 2, -1, 5, 2, 0, 7, 6, 5, 4, 3, 2, 0, 0, 1, 0, 5, 2, 2, 6}), {}}, Testcase{ {}, {}, TensorValue( {8, 8}, dtype::QuantizedS16(0.3f * 0.3f), {-60, 120, 49, 58, 58, 13, 92, 125, -5, 0, -116, -70, 22, 9, -14, 46, -69, 111, 44, 48, 6, 19, 42, 57, -8, 25, 10, 16, 26, 97, -28, -12, -12, 14, 2, 26, 48, 7, 24, 93, -2, 45, 2, 32, -19, -1, -16, 72, 23, -44, -52, -34, 45, 53, -28, 6, 33, 45, 71, 84, 47, 10, 74, 61}) }); } TEST_F(NAIVE, MATRIX_MUL_QUANTIZED8x8x32) { Checker checker(handle(), /* check_dispatch */ false); MatrixMul::Param param; param.transposeA = false; param.transposeB = false; checker.set_param(param).exect( Testcase{ TensorValue( {4, 7}, dtype::Quantized8Asymm(0.1f, (uint8_t)128), {6, 97, 210, 47, 213, 246, 92, 121, 132, 133, 37, 31, 87, 71, 0, 5, 198, 11, 97, 141, 222, 166, 76, 212, 190, 108, 245, 143}), TensorValue( {7, 5}, dtype::Quantized8Asymm(0.2f, (uint8_t)233), {89, 207, 79, 135, 43, 29, 235, 171, 40, 78, 119, 145, 254, 162, 184, 139, 248, 214, 201, 183, 127, 75, 48, 200, 96, 109, 63, 60, 100, 120, 111, 182, 150, 227, 92}), {}}, Testcase{ {}, {}, TensorValue( {4, 5}, dtype::QuantizedS32(0.1f * 0.2f), {2908, -36975, -9180, -3574, 8114, 30496, 23588, 32433, 11467, 30974, 36748, -6939, 26715, 33787, 35329, -24486, -25049, -19828, -16627, -18972})}); param.transposeA = true; checker.set_param(param).exect( Testcase{ TensorValue( {2, 1}, dtype::Quantized8Asymm(0.7f, (uint8_t)128), {129, 129}), TensorValue( {2, 1}, dtype::Quantized8Asymm(0.4f, (uint8_t)128), {129, 129}), {}}, Testcase{ {}, {}, TensorValue({1, 1}, dtype::QuantizedS32(0.7f * 0.4f), {2})}); } TEST_F(NAIVE, MATRIX_MUL_MK4) { run_matmul_mk_format( handle(), param::MatrixMul::Format::MK4, dtype::Float32(), dtype::Float32(), dtype::Float32()); } TEST_F(NAIVE, MATRIX_MUL_MK8) { run_matmul_mk_format( handle(), param::MatrixMul::Format::MK8, dtype::Int16(), dtype::Int16(), dtype::Int32()); } TEST_F(NAIVE, MATRIX_MUL_MK4_DOT) { run_matmul_mk_format( handle(), param::MatrixMul::Format::MK4_DOT, dtype::Int8(), dtype::Int8(), dtype::Int32()); } TEST_F(NAIVE, MATRIX_MUL_BFLOAT16) { Checker checker(handle(), /* check_dispatch */ false); MatrixMul::Param param, fp32_param; fp32_param = param; param.compute_mode = param::MatrixMul::ComputeMode::FLOAT32; checker.set_param(param); checker.set_dtype(0, dtype::BFloat16()); checker.set_dtype(1, dtype::BFloat16()); checker.set_dtype(2, dtype::BFloat16()); auto extra_impl = extra_impl_helper(handle(), fp32_param); checker.set_extra_opr_impl(extra_impl); checker.set_epsilon(1.5e-2); UniformFloatRNG frng{1e-2, 5.f}; checker.set_rng(0, &frng); checker.set_rng(1, &frng); checker.execs({{8, 8}, {8, 8}, {}}); param.compute_mode = param::MatrixMul::ComputeMode::DEFAULT; checker.set_param(param); checker.execs({{8, 8}, {8, 8}, {}}); } // vim: syntax=cpp.doxygen