/** * \file dnn/test/naive/rng.cpp * MegEngine is Licensed under the Apache License, Version 2.0 (the "License") * * Copyright (c) 2014-2021 Megvii Inc. All rights reserved. * * Unless required by applicable law or agreed to in writing, * software distributed under the License is distributed on an * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or * implied. */ #include "test/naive/rng.h" #include "megdnn.h" #include "test/common/tensor.h" #include "test/naive/fixture.h" namespace megdnn { namespace test { template void assert_uniform_correct(const ctype* src, size_t size) { for (size_t i = 0; i < size; ++i) { ASSERT_GT(src[i], ctype(0)); ASSERT_LE(src[i], ctype(1)); } auto stat = get_mean_var(src, size, ctype(0.5)); ASSERT_LE(std::abs(stat.first - 0.5), 1e-3); ASSERT_LE(std::abs(stat.second - 1.0 / 12), 1e-3); } namespace { template void run_uniform(Handle* handle) { auto opr = handle->create_operator(); opr->param().dtype = DTypeTrait::enumv; Tensor::ctype> t(handle, {TensorShape{200000}, dtype()}); opr->exec(t.tensornd(), {}); assert_uniform_correct(t.ptr(), t.layout().total_nr_elems()); } template void run_gaussian(Handle* handle) { using ctype = typename DTypeTrait::ctype; auto opr = handle->create_operator(); opr->param().mean = 0.8; opr->param().std = 2.3; opr->param().dtype = DTypeTrait::enumv; Tensor t(handle, {TensorShape{200001}, dtype()}); opr->exec(t.tensornd(), {}); auto ptr = t.ptr(); auto size = t.layout().total_nr_elems(); for (size_t i = 0; i < size; ++i) { ASSERT_LE(std::abs(ptr[i] - 0.8), ctype(15)); } auto stat = get_mean_var(ptr, size, ctype(0.8)); ASSERT_LE(std::abs(stat.first - 0.8), 5e-3); ASSERT_LE(std::abs(stat.second - 2.3 * 2.3), 5e-2); } template void run_gamma(Handle* handle) { using ctype = typename DTypeTrait::ctype; auto opr = handle->create_operator(); TensorLayout ly{TensorShape{2000000 * 5}, dtype()}; Tensor out(handle, ly); Tensor shape(handle, ly); Tensor scale(handle, ly); auto shape_ptr = shape.ptr(); auto scale_ptr = scale.ptr(); for (int i = 0; i < 5; ++i) { for (int j = 0; j < 2000000; ++j) { shape_ptr[i * 2000000 + j] = 2 * 0.3 * i + 0.5; scale_ptr[i * 2000000 + j] = i * 0.2 + 0.1; } } opr->exec(shape.tensornd(), scale.tensornd(), out.tensornd(), {}); auto ptr = out.ptr(); for (int i = 0; i < 5; ++i) { float a = 2 * 0.3 * i + 0.5, b = i * 0.2 + 0.1; float mean = a * b; float std = a * (b * b); auto stat = get_mean_var(ptr + i * 2000000, 2000000, ctype(mean)); ASSERT_LE(std::abs(stat.first - mean), 0.01); ASSERT_LE(std::abs(stat.second - std), 0.01); } } template void run_poisson(Handle* handle) { using ctype = typename DTypeTrait::ctype; auto opr = handle->create_operator(); TensorLayout ly{TensorShape{200000 * 5}, dtype()}; Tensor out(handle, ly); Tensor lam(handle, ly); auto lam_ptr = lam.ptr(); for (int i = 0; i < 5; ++i) { for (int j = 0; j < 200000; ++j) { lam_ptr[i * 200000 + j] = ctype(i + 1); } } opr->exec(lam.tensornd(), out.tensornd(), {}); auto ptr = out.ptr(); for (int i = 0; i < 5; ++i) { auto stat = get_mean_var(ptr + i * 200000, 200000, ctype(i + 1)); ASSERT_LE(std::abs(stat.first - ctype(i + 1)), 0.01); ASSERT_LE(std::abs(stat.second - ctype(i + 1)), 0.01); } } template void run_beta(Handle* handle) { using ctype = typename DTypeTrait::ctype; auto opr = handle->create_operator(); TensorLayout ly{TensorShape{200000 * 5}, dtype()}; Tensor out(handle, ly); Tensor alpha(handle, ly); Tensor beta(handle, ly); auto alpha_ptr = alpha.ptr(); auto beta_ptr = beta.ptr(); for (int i = 0; i < 5; ++i) { for (int j = 0; j < 200000; ++j) { alpha_ptr[i * 200000 + j] = 0.3 * i + 0.1; beta_ptr[i * 200000 + j] = 2 * i * 0.3 + 0.1; } } opr->exec(alpha.tensornd(), beta.tensornd(), out.tensornd(), {}); auto ptr = out.ptr(); for (int i = 0; i < 5; ++i) { float a = 0.3 * i + 0.1, b = 2 * i * 0.3 + 0.1; float mean = a / (a + b); float std = a * b / ((a + b) * (a + b) * (a + b + 1)); auto stat = get_mean_var(ptr + i * 200000, 200000, ctype(mean)); ASSERT_LE(std::abs(stat.first - mean), 0.01); ASSERT_LE(std::abs(stat.second - std), 0.01); } } template void run_permutation(Handle* handle) { using ctype = typename DTypeTrait::ctype; size_t sample_num = std::min(200000, static_cast(DTypeTrait::max()) - 10); auto opr = handle->create_operator(); opr->param().dtype = DTypeTrait::enumv; TensorLayout ly{TensorShape{sample_num}, dtype()}; Tensor t(handle, ly); opr->exec(t.tensornd(), {}); auto ptr = t.ptr(); auto size = t.layout().total_nr_elems(); std::vector res(size); int not_same = 0; for (size_t i = 0; i < size; ++i) { if ((ptr[i] - ctype(i)) >= 1) not_same++; res[i] = ptr[i]; } ASSERT_GT(not_same, 5000); std::sort(res.begin(), res.end()); for (size_t i = 0; i < size; ++i) { ASSERT_LE(std::abs(res[i] - ctype(i)), 1e-8); } } template void run_shuffle(Handle* handle, bool bwd_flag) { using ctype = typename DTypeTrait::ctype; auto run = [&](TensorShape shape) { auto opr = handle->create_operator(); TensorLayout srclay{shape, T()}; TensorLayout dstlay{shape, T()}; TensorLayout indexlay{TensorShape{shape[0]}, dtype::Int32()}; Tensor workspace( handle, {TensorShape{opr->get_workspace_in_bytes(srclay, dstlay, indexlay)}, dtype::Byte()}); Tensor src(handle, srclay); Tensor dst(handle, dstlay); Tensor::ctype> index(handle, indexlay); auto sptr = src.ptr(); size_t size = src.layout().total_nr_elems(); for (size_t j = 0; j < size; ++j) { sptr[j] = j; } opr->exec( src.tensornd(), dst.tensornd(), index.tensornd(), {workspace.ptr(), workspace.layout().total_nr_elems()}); auto dptr = dst.ptr(); auto iptr = index.ptr(); size_t len = index.layout().total_nr_elems(); size_t step = size / len; for (size_t i = 0; i < len; ++i) { for (size_t j = 0; j < step; ++j) { ASSERT_EQ(dptr[i * step + j], sptr[iptr[i] * step + j]); } } if (bwd_flag) { for (size_t j = 0; j < size; ++j) { sptr[j] = 0; } auto oprbwd = handle->create_operator(); oprbwd->exec( dst.tensornd(), index.tensornd(), src.tensornd(), {workspace.ptr(), workspace.layout().total_nr_elems()}); for (size_t i = 0; i < len; ++i) { for (size_t j = 0; j < step; ++j) { ASSERT_EQ(dptr[i * step + j], sptr[iptr[i] * step + j]); } } } }; run({10}); run({6, 3}); } template void run_dropout(Handle* handle) { using ctype = typename DTypeTrait::ctype; auto run = [&](TensorShape shape, float drop_prob) { auto fwd = handle->create_operator(); auto bwd = handle->create_operator(); fwd->param().drop_prob = drop_prob; bwd->param().drop_prob = drop_prob; double scale = 1.0 / (1.0 - drop_prob); TensorLayout inp_lay{shape, T()}; TensorLayout oup_lay{shape, T()}; TensorLayout mask_lay{{fwd->get_mask_size_in_bytes(inp_lay)}, dtype::Byte()}; TensorLayout doup_lay{shape, T()}; TensorLayout dinp_lay{shape, T()}; TensorLayout fwd_ws_lay{ {fwd->get_workspace_in_bytes(inp_lay, oup_lay, mask_lay)}, dtype::Byte()}; TensorLayout bwd_ws_lay{ {bwd->get_workspace_in_bytes(doup_lay, mask_lay, dinp_lay)}, dtype::Byte()}; Tensor inp(handle, inp_lay); Tensor oup(handle, oup_lay); Tensor::ctype> mask(handle, mask_lay); Tensor doup(handle, doup_lay); Tensor dinp(handle, dinp_lay); Tensor::ctype> fwd_ws(handle, fwd_ws_lay); Tensor::ctype> bwd_ws(handle, bwd_ws_lay); for (size_t i = 0; i < inp.layout().total_nr_elems(); ++i) { inp.ptr()[i] = 1; doup.ptr()[i] = 1; } fwd->exec( inp.tensornd(), oup.tensornd(), mask.tensornd(), {fwd_ws.ptr(), fwd_ws.layout().total_nr_elems()}); size_t droped_cnt = 0; for (size_t i = 0; i < inp.layout().total_nr_elems(); ++i) { ASSERT_TRUE(oup.ptr()[i] == 0 || oup.ptr()[i] == static_cast(scale)); if (oup.ptr()[i] == 0) { droped_cnt++; } } float real_drop = droped_cnt * 1.0 / inp.layout().total_nr_elems(); ASSERT_LT(abs(drop_prob - real_drop), 1e-2); bwd->exec( doup.tensornd(), mask.tensornd(), dinp.tensornd(), {bwd_ws.ptr(), bwd_ws.layout().total_nr_elems()}); for (size_t i = 0; i < inp.layout().total_nr_elems(); ++i) { ASSERT_TRUE(oup.ptr()[i] == dinp.ptr()[i]); } }; run({32, 32, 32, 32}, 0.2); run({100000}, 0.3); } } // namespace TEST_F(NAIVE, UNIFORM_RNG_F32) { run_uniform(handle()); } TEST_F(NAIVE, UNIFORM_RNG_F16) { DNN_INC_FLOAT16(run_uniform(handle())); } TEST_F(NAIVE, GAUSSIAN_RNG_F32) { run_gaussian(handle()); } TEST_F(NAIVE, GAUSSIAN_RNG_F16) { DNN_INC_FLOAT16(run_gaussian(handle())); } TEST_F(NAIVE, GAMMA_RNG_F32) { run_gamma(handle()); } TEST_F(NAIVE, GAMMA_RNG_F16) { DNN_INC_FLOAT16(run_gamma(handle())); } TEST_F(NAIVE, POISSON_RNG_F32) { run_poisson(handle()); } TEST_F(NAIVE, POISSON_RNG_F16) { DNN_INC_FLOAT16(run_poisson(handle())); } TEST_F(NAIVE, BETA_RNG_F32) { run_beta(handle()); } TEST_F(NAIVE, BETA_RNG_F16) { DNN_INC_FLOAT16(run_beta(handle())); } TEST_F(NAIVE, PERMUTATION_RNG_F32) { run_permutation(handle()); } TEST_F(NAIVE, PERMUTATION_RNG_INT32) { run_permutation(handle()); } TEST_F(NAIVE, PERMUTATION_RNG_INT16) { run_permutation(handle()); } TEST_F(NAIVE, SHUFFLE_RNG_FWD_F32) { run_shuffle(handle(), false); } TEST_F(NAIVE, SHUFFLE_RNG_FWD_INT32) { run_shuffle(handle(), false); } TEST_F(NAIVE, SHUFFLE_RNG_FWD_F16) { run_shuffle(handle(), false); } TEST_F(NAIVE, SHUFFLE_RNG_BWD_F32) { run_shuffle(handle(), true); } TEST_F(NAIVE, SHUFFLE_RNG_BWD_INT32) { run_shuffle(handle(), true); } TEST_F(NAIVE, SHUFFLE_RNG_BWD_F16) { run_shuffle(handle(), true); } TEST_F(NAIVE, DROPOUT_F32) { run_dropout(handle()); } TEST_F(NAIVE, DROPOUT_F16) { run_dropout(handle()); } } // namespace test } // namespace megdnn // vim: syntax=cpp.doxygen