# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import functools import multiprocessing as mp from collections import defaultdict from typing import Callable from weakref import WeakSet import numpy as np from megengine.autodiff.grad_manager import GradManager, get_backwarding_grad_manager from ..core._imperative_rt.core2 import apply from ..core.ops.builtin import ParamPackConcat, ParamPackSplit from ..functional.tensor import copy from ..tensor import Tensor from ..utils.deprecation import deprecated_func from ..utils.future import Future from . import group as _group from .functional import _bcast_param, all_reduce_sum, broadcast from .group import WORLD, Group, group_barrier, is_distributed, override_backend def param_pack_split(inp: Tensor, offsets: list, shapes: list): r"""Returns split tensor to tensor list as offsets and shapes described, only used for ``parampack``. Args: inp: input tensor. offsets: offsets of outputs, length of `2 * n`, while n is tensor nums you want to split, format `[begin0, end0, begin1, end1]`. shapes: tensor shapes of outputs. Returns: splitted tensors. Examples: .. testcode:: import numpy as np from megengine import tensor from megengine.distributed.helper import param_pack_split a = tensor(np.ones((10,), np.int32)) b, c = param_pack_split(a, [0, 1, 1, 10], [(1,), (3, 3)]) print(b.numpy()) print(c.numpy()) Outputs: .. testoutput:: [1] [[1 1 1] [1 1 1] [1 1 1]] """ op = ParamPackSplit() op.offsets = offsets op.shapes = [s or (1,) for s in shapes] outputs = apply(op, inp) return outputs def param_pack_concat(inps: list, offsets: Tensor, offsets_val: list): r"""Returns concated tensor, only used for ``parampack``. Args: inps: input tensors. offsets: device value of offsets. offsets_val: offsets of inputs, length of `2 * n`, format `[begin0, end0, begin1, end1]`. Returns: concated tensor. Examples: .. testcode:: import numpy as np from megengine import tensor from megengine.distributed.helper import param_pack_concat a = tensor(np.ones((1,), np.int32)) b = tensor(np.ones((3, 3), np.int32)) offsets_val = [0, 1, 1, 10] offsets = tensor(offsets_val, np.int32) c = param_pack_concat([a, b], offsets, offsets_val) print(c.numpy()) Outputs: .. testoutput:: [1 1 1 1 1 1 1 1 1 1] """ op = ParamPackConcat() op.offsets = offsets_val return apply(op, *inps, offsets)[0] def get_offsets(shapes): offsets = [] offset = 0 for shape in shapes: offsets.append(offset) offset += int(np.prod(shape)) offsets.append(offset) return offsets _enable_p2p_cache = None def _check_enable_p2p(): global _enable_p2p_cache if _enable_p2p_cache is not None: return _enable_p2p_cache cmd = ["nvidia-smi", "topo", "-p2p", "w"] import subprocess output = subprocess.run(cmd, stdout=subprocess.PIPE).stdout if output.count(b"OK") > 1: _enable_p2p_cache = True return True else: _enable_p2p_cache = False return False def pack_allreduce_split(pack_list, shapes, group, reduce_method): offsets_val = get_offsets(shapes) offsets = Tensor(offsets_val) packed_grads = param_pack_concat(pack_list, offsets, offsets_val) packed_grads = all_reduce_sum(packed_grads, group, group.comp_node) if reduce_method == "mean": packed_grads /= group.size grads = param_pack_split(packed_grads, offsets_val, shapes) return grads class TensorFuture(Future): def device(self): raise "Sorry, this tensor is not ready" def numpy(self): raise "Sorry, this tensor is not ready" def shape(self): raise "Sorry, this tensor is not ready" def dtype(self): raise "Sorry, this tensor is not ready" def synchronized(func: Callable): r"""Decorator. Decorated function will synchronize when finished. Specifically, we use this to prevent data race during hub.load """ @functools.wraps(func) def wrapper(*args, **kwargs): if not is_distributed(): return func(*args, **kwargs) ret = func(*args, **kwargs) group_barrier() return ret return wrapper def _check_device_initialized(device_type: str, rank: int): try: test = Tensor(1, device=(device_type + str(rank))) inited = False del test except: inited = True errmsg = "The cuda env is set before the forked thread starts. Please do not use any cuda function or variable before forking." if inited: raise RuntimeError(errmsg) get_device_count_by_fork = deprecated_func( "1.5", "megengine.device", "get_device_count", False ) def bcast_list_(inps: list, group: Group = WORLD): r"""Broadcast tensors between given group. Args: inps: input tensors. group: communication group. """ for inp in inps: inp._reset(_bcast_param(inp, group)) class AllreduceCallback: r"""Allreduce Callback with tensor fusion optimization. Args: reduce_method: the method to reduce gradiants. group: communication group. backend: override distributed backend in allreduce """ def __init__(self, reduce_method: str, group: Group = WORLD, backend: str = None): reduce_method = reduce_method.lower() assert reduce_method in ["sum", "mean"], "reduce_method should be sum or mean" self._reduce_method = reduce_method self._group = group self._marked_gm = WeakSet() self._param_pack_thd = 10 * 1024 * 1024 self._reset() if backend is None: assert _group._sd, "please call init_process_group first" backend = _group._sd.backend if backend == "auto": if group.is_single_machine and not _check_enable_p2p(): backend = "shm" else: backend = "nccl" self._backend = backend def _reset(self): self._params = [] self._gradients_dict = dict() self._futures_dict = dict() self._packing_list = defaultdict(list) self._packing_size = defaultdict(int) self._grad_origin_device = dict() def _pack(self, dtype): if len(self._packing_list[dtype]) == 0: return grad_list = [self._gradients_dict[p] for p in self._packing_list[dtype]] shapes = [p._tuple_shape for p in self._packing_list[dtype]] with override_backend(self._backend): reduced_grads = pack_allreduce_split( grad_list, shapes, self._group, self._reduce_method ) for param, grad in zip(self._packing_list[dtype], reduced_grads): self._gradients_dict[param] = grad self._packing_list[dtype] = [] self._packing_size[dtype] = 0 def __call__(self, param, grad): gm = get_backwarding_grad_manager() assert isinstance(gm, GradManager) if gm not in self._marked_gm: gm._register_after_backward_callback(self._flush) self._marked_gm.add(gm) self._params.append(param) self._futures_dict[param] = TensorFuture(ack=False) self._gradients_dict[param] = grad self._grad_origin_device[param] = str(grad.device) dtype_str = str(np.dtype(param.dtype)) dtype_size = np.dtype(param.dtype).itemsize self._packing_list[dtype_str].append(param) self._packing_size[dtype_str] += int(np.prod(param._tuple_shape)) * dtype_size if self._packing_size[dtype_str] > self._param_pack_thd: self._pack(dtype_str) return self._futures_dict[param] def _flush(self): for dtype in sorted(self._packing_list.keys()): self._pack(dtype) for param in self._params: grad = self._gradients_dict[param] grad = copy(grad, self._grad_origin_device[param]) self._futures_dict[param].set(grad) self._reset() make_allreduce_cb = AllreduceCallback