# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import numpy as np from ..functional import gelu, leaky_relu, prelu, relu, sigmoid, silu, softmax from ..tensor import Parameter from .module import Module class Softmax(Module): r"""Applies a softmax function. Softmax is defined as: .. math:: \text{Softmax}(x_{i}) = \frac{exp(x_i)}{\sum_j exp(x_j)} It is applied to all elements along axis, and rescales elements so that they stay in the range `[0, 1]` and sum to 1. Args: axis: Along which axis softmax will be applied. By default, softmax will apply along the highest ranked axis. Examples: .. testcode:: import numpy as np import megengine as mge import megengine.module as M data = mge.tensor(np.array([-2,-1,0,1,2]).astype(np.float32)) softmax = M.Softmax() output = softmax(data) with np.printoptions(precision=6): print(output.numpy()) Outputs: .. testoutput:: [0.011656 0.031685 0.086129 0.234122 0.636409] """ def __init__(self, axis=None, **kwargs): super().__init__(**kwargs) self.axis = axis def forward(self, inputs): return softmax(inputs, self.axis) def _module_info_string(self) -> str: return "axis={axis}".format(axis=self.axis) class Sigmoid(Module): r"""Applies the element-wise function: .. math:: \text{Sigmoid}(x) = \frac{1}{1 + \exp(-x)} Examples: .. testcode:: import numpy as np import megengine as mge import megengine.module as M data = mge.tensor(np.array([-2,-1,0,1,2,]).astype(np.float32)) sigmoid = M.Sigmoid() output = sigmoid(data) with np.printoptions(precision=6): print(output.numpy()) Outputs: .. testoutput:: [0.119203 0.268941 0.5 0.731059 0.880797] """ def forward(self, inputs): return sigmoid(inputs) class SiLU(Module): r"""Applies the element-wise function: .. math:: \text{SiLU}(x) = \frac{x}{1 + \exp(-x)} Examples: .. testcode:: import numpy as np import megengine as mge import megengine.module as M data = mge.tensor(np.array([-2,-1,0,1,2,]).astype(np.float32)) silu = M.SiLU() output = silu(data) with np.printoptions(precision=6): print(output.numpy()) Outputs: .. testoutput:: [-0.238406 -0.268941 0. 0.731059 1.761594] """ def forward(self, inputs): return silu(inputs) class GELU(Module): r"""Applies the element-wise function: .. math:: \text{GELU}(x) = x\Phi(x) where :math:`\Phi(x)` is the Cumulative Distribution Function for Gaussian Distribution. Examples: .. testcode:: import numpy as np import megengine as mge import megengine.module as M data = mge.tensor(np.array([-2,-1,0,1,2,]).astype(np.float32)) gelu = M.GELU() output = gelu(data) with np.printoptions(precision=4): print(output.numpy()) Outputs: .. testoutput:: [-0.0455 -0.1587 0. 0.8413 1.9545] """ def forward(self, inputs): return gelu(inputs) class ReLU(Module): r"""Applies the element-wise function: .. math:: \text{ReLU}(x) = \max(x, 0) Examples: .. testcode:: import numpy as np import megengine as mge import megengine.module as M data = mge.tensor(np.array([-2,-1,0,1,2,]).astype(np.float32)) relu = M.ReLU() output = relu(data) with np.printoptions(precision=6): print(output.numpy()) Outputs: .. testoutput:: [0. 0. 0. 1. 2.] """ def forward(self, x): return relu(x) class PReLU(Module): r"""Applies the element-wise function: .. math:: \text{PReLU}(x) = \max(0,x) + a * \min(0,x) or .. math:: \text{PReLU}(x) = \begin{cases} x, & \text{ if } x \geq 0 \\ ax, & \text{ otherwise } \end{cases} Here :math:`a` is a learnable parameter. When called without arguments, `PReLU()` uses a single paramter :math:`a` across all input channel. If called with `PReLU(num_of_channels)`, each input channle will has it's own :math:`a`. Args: num_parameters: number of :math:`a` to learn, there is only two values are legitimate: 1, or the number of channels at input. Default: 1 init: the initial value of :math:`a`. Default: 0.25 Examples: .. testcode:: import numpy as np import megengine as mge import megengine.module as M data = mge.tensor(np.array([-1.2, -3.7, 2.7]).astype(np.float32)) prelu = M.PReLU() output = prelu(data) print(output.numpy()) Outputs: .. testoutput:: [-0.3 -0.925 2.7 ] """ def __init__(self, num_parameters: int = 1, init: float = 0.25, **kwargs): super().__init__(**kwargs) self.num_parameters = num_parameters if num_parameters > 1: # Assume format is NCHW self.weight = Parameter( data=np.full((1, num_parameters, 1, 1), init, dtype=np.float32) ) else: self.weight = Parameter(data=[init]) def forward(self, inputs): return prelu(inputs, self.weight) class LeakyReLU(Module): r"""Applies the element-wise function: .. math:: \text{LeakyReLU}(x) = \max(0,x) + negative\_slope \times \min(0,x) or .. math:: \text{LeakyReLU}(x) = \begin{cases} x, & \text{ if } x \geq 0 \\ negative\_slope \times x, & \text{ otherwise } \end{cases} Examples: .. testcode:: import numpy as np import megengine as mge import megengine.module as M data = mge.tensor(np.array([-8, -12, 6, 10]).astype(np.float32)) leakyrelu = M.LeakyReLU(0.01) output = leakyrelu(data) print(output.numpy()) Outputs: .. testoutput:: [-0.08 -0.12 6. 10. ] """ def __init__(self, negative_slope: float = 0.01, **kwargs): super().__init__(**kwargs) self.negative_slope = negative_slope def forward(self, inputs): return leaky_relu(inputs, self.negative_slope)