# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. from abc import abstractmethod from typing import Tuple, Union from ..functional import avg_pool2d, max_pool2d from .module import Module class _PoolNd(Module): def __init__( self, kernel_size: Union[int, Tuple[int, int]], stride: Union[int, Tuple[int, int]] = None, padding: Union[int, Tuple[int, int]] = 0, **kwargs ): super(_PoolNd, self).__init__(**kwargs) self.kernel_size = kernel_size self.stride = stride or kernel_size self.padding = padding @abstractmethod def forward(self, inp): pass def _module_info_string(self) -> str: return "kernel_size={kernel_size}, stride={stride}, padding={padding}".format( **self.__dict__ ) class MaxPool2d(_PoolNd): r"""Applies a 2D max pooling over an input. For instance, given an input of the size :math:`(N, C, H, W)` and :attr:`kernel_size` :math:`(kH, kW)`, this layer generates the output of the size :math:`(N, C, H_{out}, W_{out})` through a process described as: .. math:: \begin{aligned} out(N_i, C_j, h, w) ={} & \max_{m=0, \ldots, kH-1} \max_{n=0, \ldots, kW-1} \text{input}(N_i, C_j, \text{stride[0]} \times h + m, \text{stride[1]} \times w + n) \end{aligned} If :attr:`padding` is non-zero, then the input is implicitly zero-padded on both sides for :attr:`padding` number of points. Args: kernel_size: the size of the window to take a max over. stride: the stride of the window. Default value is kernel_size. padding: implicit zero padding to be added on both sides. Examples: .. testcode:: import numpy as np import megengine as mge import megengine.module as M m = M.MaxPool2d(kernel_size=3, stride=1, padding=0) inp = mge.tensor(np.arange(0, 16).astype("float32").reshape(1, 1, 4, 4)) oup = m(inp) print(oup.numpy()) Outputs: .. testoutput:: [[[[10. 11.] [14. 15.]]]] """ def forward(self, inp): return max_pool2d(inp, self.kernel_size, self.stride, self.padding) class AvgPool2d(_PoolNd): r"""Applies a 2D average pooling over an input. For instance, given an input of the size :math:`(N, C, H, W)` and :attr:`kernel_size` :math:`(kH, kW)`, this layer generates the output of the size :math:`(N, C, H_{out}, W_{out})` through a process described as: .. math:: out(N_i, C_j, h, w) = \frac{1}{kH * kW} \sum_{m=0}^{kH-1} \sum_{n=0}^{kW-1} input(N_i, C_j, stride[0] \times h + m, stride[1] \times w + n) If :attr:`padding` is non-zero, then the input is implicitly zero-padded on both sides for :attr:`padding` number of points. Args: kernel_size: the size of the window. stride: the stride of the window. Default value is kernel_size。 padding: implicit zero padding to be added on both sides. mode: whether to count padding values. "average" mode will do counting and "average_count_exclude_padding" mode won't do counting. Default: "average_count_exclude_padding" """ def __init__( self, kernel_size: Union[int, Tuple[int, int]], stride: Union[int, Tuple[int, int]] = None, padding: Union[int, Tuple[int, int]] = 0, mode: str = "average_count_exclude_padding", **kwargs ): super(AvgPool2d, self).__init__(kernel_size, stride, padding, **kwargs) self.mode = mode def forward(self, inp): return avg_pool2d(inp, self.kernel_size, self.stride, self.padding, self.mode) def _module_info_string(self) -> str: return "kernel_size={kernel_size}, stride={stride}, padding={padding}, mode={mode}".format( **self.__dict__ )