# MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. from .. import linear as Float from .module import QATModule class Linear(Float.Linear, QATModule): r"""A :class:`~.QATModule` version of :class:`~.module.Linear`. Could be applied with :class:`~.Observer` and :class:`~.quantization.fake_quant.FakeQuantize`. Args: in_features: size of each input sample. out_features: size of each output sample. bias: If set to ``False``, the layer will not learn an additive bias. Default: True """ def forward(self, inp): w_qat = self.apply_quant_weight(self.weight) b_qat = self.apply_quant_bias(self.bias, inp, w_qat) return self.apply_quant_activation(self._calc_linear(inp, w_qat, b_qat)) @classmethod def from_float_module(cls, float_module: Float.Linear): r""" Return a :class:`~.QATModule` instance converted from a float :class:`~.Module` instance. """ qmod = cls( float_module.in_features, float_module.out_features, name=float_module.name ) qmod.weight = float_module.weight qmod.bias = float_module.bias return qmod