# MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. from typing import Tuple, Union import numpy as np from ... import module as Float from ...core.tensor import dtype from ...functional import expand_dims, squeeze from ...functional.quantized import batch_conv_bias_activation from ...tensor import Parameter from ..qat import batch_matmul_activation as QAT from .module import QuantizedModule class BatchMatMulActivation(Float.BatchMatMulActivation, QuantizedModule): r"""Quantized version of :class:`~.qat.BatchMatMulActivation`.""" def __init__( self, batch: int, in_features: int, out_features: int, bias: bool = True, nonlinear_mode="identity", dtype=None, **kwargs ): super().__init__(batch, in_features, out_features, bias, **kwargs) self.output_dtype = dtype def calc_bmm_quantized(self, inp): inp_scale = dtype.get_scale(inp.dtype) w_scale = dtype.get_scale(self.weight.dtype) bias_scale = inp_scale * w_scale inp = expand_dims(inp, [-1]) res = batch_conv_bias_activation( inp, self.weight, self.bias.astype(dtype.qint32(bias_scale)), dtype=self.output_dtype, stride=1, padding=0, dilation=1, groups=1, nonlinear_mode=self.nonlinear_mode, ) return squeeze(res, -1) @classmethod def from_qat_module(cls, qat_module: QAT.BatchMatMulActivation): output_dtype = qat_module.get_activation_dtype() qbmm = cls( qat_module.batch, qat_module.in_features, qat_module.out_features, qat_module.bias is not None, dtype=output_dtype, name=qat_module.name, ) weight = qat_module.weight.astype(qat_module.get_weight_dtype()) weight = expand_dims(weight, [-1, -2]) qbmm.weight = Parameter(weight.numpy(), name=qat_module.weight.name) if qat_module.bias is not None: bias = qat_module.bias.reshape((1, qbmm.out_features, 1, 1)) qbmm.bias = Parameter(bias.numpy(), name=qat_module.bias.name) else: qbmm.bias = Parameter( np.zeros((1, qbmm.out_features, 1, 1), dtype=np.float32) ) return qbmm def forward(self, inp): return self.calc_bmm_quantized(inp)