# MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. from typing import Iterable from ... import functional as F from ...tensor import Tensor from ..qat import concat as QAT from .module import QuantizedModule class Concat(QuantizedModule): r"""A :class:`~.QuantizedModule` to do quantized :func:`~.concat`, used for inference only.""" def __init__(self, dtype=None, **kwargs): super().__init__(**kwargs) self.output_dtype = dtype def forward(self, inps: Iterable[Tensor], axis: int = 0): new_inps = tuple(x.astype(self.output_dtype) for x in inps) return F.concat(new_inps, axis) @classmethod def from_qat_module(cls, qat_module: QAT.Concat): r""" Return a :class:`~.QuantizedModule` instance converted from a :class:`~.QATModule` instance. """ return cls(qat_module.get_activation_dtype(), name=qat_module.name)