# MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. from typing import Tuple, Union import numpy as np from ... import module as Float from ...core.tensor import dtype from ...functional.nn import conv_bias_activation, pad from ...functional.quantized import conv_transpose2d from ...tensor import Parameter from ..qat import conv as QAT from .module import QuantizedModule class Conv2d(Float.Conv2d, QuantizedModule): r"""Quantized version of :class:`~.qat.Conv2d`. Applies a 2D convolution over a quantized input tensor, used for inference only. The parameter is same with :class:`~.module.Conv2d`. """ def __init__( self, in_channels: int, out_channels: int, kernel_size: Union[int, Tuple[int, int]], stride: Union[int, Tuple[int, int]] = 1, padding: Union[int, Tuple[int, int]] = 0, dilation: Union[int, Tuple[int, int]] = 1, groups: int = 1, conv_mode: str = "cross_correlation", compute_mode: str = "default", dtype=None, padding_mode: str = "zeros", **kwargs ): super().__init__( in_channels, out_channels, kernel_size, stride, padding, dilation, groups, True, conv_mode, compute_mode, padding_mode, ) self.output_dtype = dtype def calc_conv_quantized(self, inp, nonlinear_mode="identity"): assert self.padding_mode in [ "zeros", "reflect", "replicate", ] inp_scale = dtype.get_scale(inp.dtype) w_scale = dtype.get_scale(self.weight.dtype) bias_scale = inp_scale * w_scale if self.padding_mode != "zeros": return conv_bias_activation( pad(inp, self.get_pad_witdth(), self.padding_mode), self.weight, self.bias.astype(dtype.qint32(bias_scale)), self.output_dtype, self.stride, 0, self.dilation, self.groups, conv_mode=self.conv_mode, compute_mode=self.compute_mode, nonlinear_mode=nonlinear_mode, ) return conv_bias_activation( inp, self.weight, self.bias.astype(dtype.qint32(bias_scale)), self.output_dtype, self.stride, self.padding, self.dilation, self.groups, conv_mode=self.conv_mode, compute_mode=self.compute_mode, nonlinear_mode=nonlinear_mode, ) @classmethod def from_qat_module(cls, qat_module: QAT.Conv2d): r""" Return a :class:`~.QuantizedModule` instance converted from a :class:`~.QATModule` instance. """ output_dtype = qat_module.get_activation_dtype() qconv = cls( qat_module.in_channels, qat_module.out_channels, qat_module.kernel_size, qat_module.stride, qat_module.padding, qat_module.dilation, qat_module.groups, dtype=output_dtype, padding_mode=qat_module.padding_mode, name=qat_module.name, ) weight = qat_module.weight.astype(qat_module.get_weight_dtype()) qconv.weight = Parameter(weight.numpy(), name=qat_module.weight.name) if qat_module.bias is not None: qconv.bias = Parameter(qat_module.bias.numpy(), name=qat_module.bias.name) else: qconv.bias = Parameter( np.zeros(qat_module._infer_bias_shape(), dtype=np.float32) ) return qconv def forward(self, inp): return self.calc_conv_quantized(inp, nonlinear_mode="identity") class ConvRelu2d(Conv2d): r"""Quantized version of :class:`~.qat.ConvRelu2d`.""" def forward(self, inp): return self.calc_conv_quantized(inp, nonlinear_mode="relu") class ConvTranspose2d(Float.ConvTranspose2d, QuantizedModule): r"""Quantized version of :class:`~.qat.ConvTranspose2d`. Applies a 2D transposed convolution over a quantized input tensor, used for inference only. The parameter is same with :class:`~.module.ConvTranspose2d` but dtype. Args: dtype: data type of the output, should be qint8. """ def __init__( self, in_channels: int, out_channels: int, kernel_size: Union[int, Tuple[int, int]], stride: Union[int, Tuple[int, int]] = 1, padding: Union[int, Tuple[int, int]] = 0, dilation: Union[int, Tuple[int, int]] = 1, groups: int = 1, bias: bool = True, conv_mode: str = "cross_correlation", compute_mode: str = "default", dtype=None, **kwargs ): super().__init__( in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride, padding=padding, dilation=dilation, groups=groups, bias=bias, conv_mode=conv_mode, compute_mode=compute_mode, ) self.output_dtype = dtype @classmethod def from_qat_module(cls, qat_module: QAT.ConvTranspose2d): r""" return a :class:`~.QuantizedModule` instance converted from a :class:`~.QATModule` instance. """ output_dtype = qat_module.get_activation_dtype() qconv = cls( qat_module.in_channels, qat_module.out_channels, qat_module.kernel_size, qat_module.stride, qat_module.padding, qat_module.dilation, qat_module.groups, qat_module.bias is not None, qat_module.conv_mode, qat_module.compute_mode, dtype=output_dtype, name=qat_module.name, ) weight = qat_module.weight.astype(qat_module.get_weight_dtype()) qconv.weight = Parameter(weight.numpy(), name=qat_module.weight.name) qconv.bias = ( Parameter(qat_module.bias.numpy(), name=qat_module.bias.name) if qat_module.bias is not None else None ) return qconv def calc_conv_transpose2d_quantized(self, inp): if self.bias is not None: inp_scale = dtype.get_scale(inp.dtype) w_scale = dtype.get_scale(self.weight.dtype) bias_scale = inp_scale * w_scale return conv_transpose2d( inp=inp, weight=self.weight, bias=self.bias.astype(dtype.qint32(bias_scale)) if self.bias is not None else None, dtype=self.output_dtype, stride=self.stride, padding=self.padding, dilation=self.dilation, groups=self.groups, conv_mode=self.conv_mode, compute_mode=self.compute_mode, ) def forward(self, inp): return self.calc_conv_transpose2d_quantized(inp)