# MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. from ...tensor import Parameter from ..qat import conv_bn as QAT from .conv import Conv2d class _ConvBnActivation2d(Conv2d): r"""Applies a 2D convolution over a quantized input tensor, used for inference only. """ @classmethod def from_qat_module(cls, qat_module: QAT._ConvBnActivation2d): r""" Return a :class:`~.QuantizedModule` instance converted from a :class:`~.QATModule` instance. """ output_dtype = qat_module.get_activation_dtype() qconv = cls( qat_module.conv.in_channels, qat_module.conv.out_channels, qat_module.conv.kernel_size, qat_module.conv.stride, qat_module.conv.padding, qat_module.conv.dilation, qat_module.conv.groups, dtype=output_dtype, name=qat_module.name, padding_mode=qat_module.conv.padding_mode, ) w_fold, b_fold = qat_module.fold_weight_bias( qat_module.bn.running_mean, qat_module.bn.running_var ) weight = w_fold.astype(qat_module.get_weight_dtype()) qconv.weight = Parameter(weight.numpy(), name=qat_module.conv.weight.name) qconv.bias = Parameter(b_fold.numpy()) if qat_module.conv.bias is not None: qconv.bias.name = qat_module.conv.bias.name return qconv class ConvBn2d(_ConvBnActivation2d): r"""Quantized version of :class:`~.qat.ConvBn2d`.""" def forward(self, inp): return self.calc_conv_quantized(inp, nonlinear_mode="identity") class ConvBnRelu2d(_ConvBnActivation2d): r"""Quantized version of :class:`~.qat.ConvBnRelu2d`.""" def forward(self, inp): return self.calc_conv_quantized(inp, nonlinear_mode="relu")