# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import os from typing import Iterable, Tuple, Union from ..functional.inplace import _inplace_add_ from ..tensor import Parameter, tensor from .optimizer import Optimizer class AdamW(Optimizer): r"""Implements AdamW algorithm proposed in `"Decoupled Weight Decay Regularization" `_. Args: params: iterable of parameters to optimize or dicts defining parameter groups. lr: learning rate. betas: coefficients used for computing running averages of gradient and its square. Default: (0.9, 0.999) eps: term added to the denominator to improve numerical stability. Default: 1e-8 weight_decay: weight decay (L2 penalty). Default: 1e-2 """ def __init__( self, params: Union[Iterable[Parameter], dict], lr: float, betas: Tuple[float, float] = (0.9, 0.999), eps: float = 1e-8, weight_decay: float = 1e-2, ): if lr < 0.0: raise ValueError("Invalid learning rate: {}".format(lr)) if weight_decay < 0.0: raise ValueError("Invalid weight_decay value: {}".format(weight_decay)) if not 0.0 <= betas[0] < 1.0: raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0])) if not 0.0 <= betas[1] < 1.0: raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1])) defaults = dict(lr=lr, weight_decay=weight_decay, betas=betas, eps=eps) super().__init__(params, defaults) self._disable_type_convert = True def _create_state(self, param_group): for param in param_group["params"]: self._add_state(param, "exp_avg") self._add_state(param, "exp_avg_sq") self._add_state(param, "step", initializer=0.0) def _updates(self, param_group): lr = param_group["lr"] weight_decay = param_group["weight_decay"] eps = param_group["eps"] beta0, beta1 = param_group["betas"] def make_scalar(val): return tensor(val, dtype="float32") # since `conver_inputs` is disabled for param updates, # scalar should be explicitly tansforred to tensor _lr, _neg_lr = map(make_scalar, (lr, -lr)) _weight_decay = make_scalar(weight_decay) _eps = make_scalar(eps) _beta0, _beta1 = map(make_scalar, (beta0, beta1)) c1, c05 = map(make_scalar, (1.0, 0.5)) inplace_mode = int(os.getenv("MEGENGINE_INPLACE_UPDATE", "0")) if inplace_mode: # reduce device sync c1_sub_beta0, c1_sub_beta1 = map(make_scalar, (1 - beta0, 1 - beta1)) for param in param_group["params"]: if param.grad is None: continue grad = param.grad states = self._state[param] step, exp_avg, exp_avg_sq = ( states["step"], states["exp_avg"], states["exp_avg_sq"], ) if inplace_mode: _inplace_add_(step, c1, alpha=c1, beta=c1) _inplace_add_(exp_avg, grad, alpha=_beta0, beta=c1_sub_beta0) _inplace_add_( exp_avg_sq, grad * grad, alpha=_beta1, beta=c1_sub_beta1, ) delta = (exp_avg / (c1 - _beta0 ** step)) / ( (exp_avg_sq / (c1 - _beta1 ** step)) ** c05 + _eps ) if weight_decay != 0.0: delta += param * _weight_decay _inplace_add_(param, delta, alpha=c1, beta=_neg_lr) continue # step = step + c1 step += c1 # exp_avg = _beta0 * exp_avg + grad * (c1 - _beta0) exp_avg *= _beta0 exp_avg += grad * (c1 - _beta0) # exp_avg_sq = _beta1 * exp_avg_sq + (c1 - _beta1) * (grad * grad) exp_avg_sq *= _beta1 exp_avg_sq += (c1 - _beta1) * (grad * grad) delta = (exp_avg / (c1 - _beta0 ** step)) / ( (exp_avg_sq / (c1 - _beta1 ** step)) ** c05 + _eps ) if weight_decay != 0.0: delta += param * _weight_decay param -= _lr * delta