# MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import collections from collections import namedtuple from functools import partial from typing import Iterable import numpy as np import tabulate from .. import Tensor from .. import functional as F from .. import get_logger from .. import module as M from ..core.tensor.dtype import get_dtype_bit from ..logger import MegEngineLogFormatter from .module_utils import set_module_mode_safe try: MegEngineLogFormatter.max_lines = float("inf") except AttributeError as e: raise ValueError("set logger max lines failed") logger = get_logger(__name__) logger.setLevel("INFO") _calc_flops_dict = {} _calc_receptive_field_dict = {} def _receptive_field_fallback(module, inputs, outputs): if not _receptive_field_enabled: return assert not hasattr(module, "_rf") assert not hasattr(module, "_stride") if len(inputs) == 0: # TODO: support other dimension module._rf = (1, 1) module._stride = (1, 1) return module._rf, module._stride rf, stride = preprocess_receptive_field(module, inputs, outputs) module._rf = rf module._stride = stride return rf, stride # key tuple, impl_dict, fallback _iter_list = [ ("flops_num", _calc_flops_dict, None), ( ("receptive_field", "stride"), _calc_receptive_field_dict, _receptive_field_fallback, ), ] _receptive_field_enabled = False def _register_dict(*modules, dict=None): def callback(impl): for module in modules: dict[module] = impl return impl return callback def register_flops(*modules): return _register_dict(*modules, dict=_calc_flops_dict) def register_receptive_field(*modules): return _register_dict(*modules, dict=_calc_receptive_field_dict) def enable_receptive_field(): global _receptive_field_enabled _receptive_field_enabled = True def disable_receptive_field(): global _receptive_field_enabled _receptive_field_enabled = False @register_flops( M.Conv1d, M.Conv2d, M.Conv3d, M.ConvTranspose2d, M.LocalConv2d, M.DeformableConv2d ) def flops_convNd(module: M.Conv2d, inputs, outputs): bias = 1 if module.bias is not None else 0 # N x Cout x H x W x (Cin x Kw x Kh + bias) return np.prod(outputs[0].shape) * ( module.in_channels // module.groups * np.prod(module.kernel_size) + bias ) @register_flops( M.batchnorm._BatchNorm, M.SyncBatchNorm, M.GroupNorm, M.LayerNorm, M.InstanceNorm, ) def flops_norm(module: M.Linear, inputs, outputs): return np.prod(inputs[0].shape) * 7 @register_flops(M.AvgPool2d, M.MaxPool2d) def flops_pool(module: M.AvgPool2d, inputs, outputs): kernel_sum = 0 if isinstance(module.kernel_size, tuple) and len(module.kernel_size) == 2: kernel_sum = np.prod(module.kernel_size) else: kernel_sum = module.kernel_size ** 2 return np.prod(outputs[0].shape) * kernel_sum @register_flops(M.AdaptiveAvgPool2d, M.AdaptiveMaxPool2d) def flops_adaptivePool(module: M.AdaptiveAvgPool2d, inputs, outputs): stride_h = np.floor(inputs[0].shape[2] / (inputs[0].shape[2] - 1)) kernel_h = inputs[0].shape[2] - (inputs[0].shape[2] - 1) * stride_h stride_w = np.floor(inputs[0].shape[3] / (inputs[0].shape[3] - 1)) kernel_w = inputs[0].shape[3] - (inputs[0].shape[3] - 1) * stride_w return np.prod(outputs[0].shape) * kernel_h * kernel_w @register_flops(M.Linear) def flops_linear(module: M.Linear, inputs, outputs): bias = module.out_features if module.bias is not None else 0 return np.prod(outputs[0].shape) * module.in_features + bias @register_flops(M.BatchMatMulActivation) def flops_batchmatmul(module: M.BatchMatMulActivation, inputs, outputs): bias = 1 if module.bias is not None else 0 x = inputs[0] w = module.weight batch_size = x.shape[0] n, p = x.shape[1:] _, m = w.shape[1:] return n * (p + bias) * m * batch_size # does not need import qat and quantized module since they inherit from float module. hook_modules = ( M.conv._ConvNd, M.Linear, M.BatchMatMulActivation, M.batchnorm._BatchNorm, M.LayerNorm, M.GroupNorm, M.InstanceNorm, M.pooling._PoolNd, M.adaptive_pooling._AdaptivePoolNd, ) def _mean(inp): inp = Tensor(inp).astype(np.float32) return F.mean(inp).numpy() def _std(inp): inp = Tensor(inp).astype(np.float32) return F.std(inp).numpy() def dict2table(list_of_dict, header): table_data = [header] for d in list_of_dict: row = [] for h in header: v = "" if h in d: v = d[h] row.append(v) table_data.append(row) return table_data def sizeof_fmt(num, suffix="B"): if suffix == "B": scale = 1024.0 units = ["", "Ki", "Mi", "Gi", "Ti", "Pi", "Ei", "Zi", "Yi"] else: scale = 1000.0 units = ["", "K", "M", "G", "T", "P", "E", "Z", "Y"] for unit in units: if abs(num) < scale or unit == units[-1]: return "{:3.3f} {}{}".format(num, unit, suffix) num /= scale def preprocess_receptive_field(module, inputs, outputs): # TODO: support other dimensions pre_rf = ( max(getattr(i.owner, "_rf", (1, 1))[0] for i in inputs), max(getattr(i.owner, "_rf", (1, 1))[1] for i in inputs), ) pre_stride = ( max(getattr(i.owner, "_stride", (1, 1))[0] for i in inputs), max(getattr(i.owner, "_stride", (1, 1))[1] for i in inputs), ) return pre_rf, pre_stride def get_op_stats(module, inputs, outputs): if not isinstance(outputs, tuple) and not isinstance(outputs, list): outputs = (outputs,) rst = { "input_shapes": [i.shape for i in inputs], "output_shapes": [o.shape for o in outputs], } valid_flag = False for key, _dict, fallback in _iter_list: for _type in _dict: if isinstance(module, _type): value = _dict[_type](module, inputs, outputs) valid_flag = True break else: if fallback is not None: value = fallback(module, inputs, outputs) continue if isinstance(key, tuple): assert isinstance(value, tuple) for k, v in zip(key, value): rst[k] = v else: rst[key] = value if valid_flag: return rst else: return None return def sum_op_stats(flops, bar_length_max=20): max_flops_num = max([i["flops_num"] for i in flops] + [0]) total_flops_num = 0 for d in flops: total_flops_num += int(d["flops_num"]) d["flops_cum"] = sizeof_fmt(total_flops_num, suffix="OPs") for d in flops: ratio = d["ratio"] = d["flops_num"] / total_flops_num d["percentage"] = "{:.2f}%".format(ratio * 100) bar_length = int(d["flops_num"] / max_flops_num * bar_length_max) d["bar"] = "#" * bar_length d["flops"] = sizeof_fmt(d["flops_num"], suffix="OPs") total_flops_str = sizeof_fmt(total_flops_num, suffix="OPs") total_var_size = sum( sum(s[1] if len(s) > 1 else 0 for s in d["output_shapes"]) for d in flops ) flops.append( dict(name="total", flops=total_flops_str, output_shapes=total_var_size) ) return total_flops_num, flops def print_op_stats(flops): header = [ "name", "class_name", "input_shapes", "output_shapes", "flops", "flops_cum", "percentage", "bar", ] if _receptive_field_enabled: header.insert(4, "receptive_field") header.insert(5, "stride") logger.info("flops stats: \n" + tabulate.tabulate(dict2table(flops, header=header))) def get_param_stats(param: Tensor): nbits = get_dtype_bit(np.dtype(param.dtype).name) shape = param.shape param_dim = np.prod(param.shape) param_size = param_dim * nbits // 8 return { "dtype": np.dtype(param.dtype), "shape": shape, "mean": "{:.3g}".format(_mean(param)), "std": "{:.3g}".format(_std(param)), "param_dim": param_dim, "nbits": nbits, "size": param_size, } def sum_param_stats(params, bar_length_max=20): max_size = max([d["size"] for d in params] + [0]) total_param_dims, total_param_size = 0, 0 for d in params: total_param_dims += int(d["param_dim"]) total_param_size += int(d["size"]) d["size_cum"] = sizeof_fmt(total_param_size) for d in params: ratio = d["size"] / total_param_size d["ratio"] = ratio d["percentage"] = "{:.2f}%".format(ratio * 100) bar_length = int(d["size"] / max_size * bar_length_max) d["size_bar"] = "#" * bar_length d["size"] = sizeof_fmt(d["size"]) param_size = sizeof_fmt(total_param_size) params.append(dict(name="total", param_dim=total_param_dims, size=param_size,)) return total_param_dims, total_param_size, params def print_param_stats(params): header = [ "name", "dtype", "shape", "mean", "std", "param_dim", "nbits", "size", "size_cum", "percentage", "size_bar", ] logger.info( "param stats: \n" + tabulate.tabulate(dict2table(params, header=header)) ) def get_activation_stats(output: Tensor, has_input=False): out_shape = output.shape activations_dtype = np.dtype(output.dtype) nbits = get_dtype_bit(activations_dtype.name) act_dim = np.prod(out_shape) act_size = act_dim * nbits // 8 activation_stats = { "dtype": activations_dtype, "shape": out_shape, "act_dim": act_dim, "nbits": nbits, "size": act_size, } if has_input: activation_stats["mean"] = "{:.3g}".format(_mean(output)) activation_stats["std"] = "{:.3g}".format(_std(output)) return activation_stats def sum_activations_stats(activations, bar_length_max=20): max_act_size = max([i["size"] for i in activations] + [0]) total_act_dims, total_act_size = 0, 0 for d in activations: total_act_size += int(d["size"]) total_act_dims += int(d["act_dim"]) d["size_cum"] = sizeof_fmt(total_act_size) for d in activations: ratio = d["ratio"] = d["size"] / total_act_size d["percentage"] = "{:.2f}%".format(ratio * 100) bar_length = int(d["size"] / max_act_size * bar_length_max) d["size_bar"] = "#" * bar_length d["size"] = sizeof_fmt(d["size"]) act_size = sizeof_fmt(total_act_size) activations.append(dict(name="total", act_dim=total_act_dims, size=act_size,)) return total_act_dims, total_act_size, activations def print_activations_stats(activations, has_input=False): header = [ "name", "class_name", "dtype", "shape", "nbits", "act_dim", "size", "size_cum", "percentage", "size_bar", ] if has_input: header.insert(4, "mean") header.insert(5, "std") logger.info( "activations stats: \n" + tabulate.tabulate(dict2table(activations, header=header)) ) def print_summary(**kwargs): data = [["item", "value"]] data.extend(list(kwargs.items())) logger.info("summary\n" + tabulate.tabulate(data)) def module_stats( model: M.Module, inputs: Iterable[np.ndarray] = None, input_shapes: list = None, cal_params: bool = True, cal_flops: bool = True, cal_activations: bool = True, logging_to_stdout: bool = True, bar_length_max: int = 20, ): r"""Calculate and print ``model``'s statistics by adding hook and record Module's inputs outputs size. Args: model: model that need to get stats info. inputs: user defined input data for running model and calculating stats, alternative with input_shapes. input_shapes: shapes to generate random inputs for running model and calculating stats, alternative with inputs. cal_params: whether calculate and record params size. cal_flops: whether calculate and record op flops. cal_activations: whether calculate and record op activations. logging_to_stdout: whether print all calculated statistic details. bar_length_max: size of bar indicating max flops or parameter size in net stats. """ has_inputs = False if inputs is not None: has_inputs = True if not isinstance(inputs, (tuple, list)): inputs = [inputs] def load_tensor(x): if isinstance(x, np.ndarray): return Tensor(x) elif isinstance(x, collections.abc.Mapping): return {k: load_tensor(v) for k, v in x.items()} elif isinstance(x, tuple) and hasattr(x, "_fields"): # nametuple return type(x)(*(load_tensor(value) for value in x)) elif isinstance(x, collections.abc.Sequence): return [load_tensor(v) for v in x] else: return Tensor(x, dtype=np.float32) inputs = load_tensor(inputs) else: if input_shapes: if not isinstance(input_shapes[0], tuple): input_shapes = [input_shapes] inputs = [F.zeros(in_size, dtype=np.float32) for in_size in input_shapes] else: logger.error( "Inputs or input_shapes is required for running model and calculating stats.", exc_info=True, ) return if not cal_activations: log_activations = False disable_receptive_field() def module_stats_hook(module, inputs, outputs, name=""): class_name = str(module.__class__).split(".")[-1].split("'")[0] if cal_flops: flops_stats = get_op_stats(module, inputs, outputs) if flops_stats is not None: flops_stats["name"] = name flops_stats["class_name"] = class_name flops.append(flops_stats) if cal_params: if hasattr(module, "weight") and module.weight is not None: w = module.weight param_stats = get_param_stats(w) param_stats["name"] = name + "-w" params.append(param_stats) if hasattr(module, "bias") and module.bias is not None: b = module.bias param_stats = get_param_stats(b) param_stats["name"] = name + "-b" params.append(param_stats) if cal_activations: if not isinstance(outputs, (tuple, list)): output = outputs else: output = outputs[0] activation_stats = get_activation_stats(output, has_inputs) activation_stats["name"] = name activation_stats["class_name"] = class_name activations.append(activation_stats) params = [] flops = [] hooks = [] activations = [] total_stats = namedtuple( "total_stats", ["param_size", "param_dims", "flops", "act_size", "act_dims"] ) stats_details = namedtuple("module_stats", ["params", "flops", "activations"]) for (name, module) in model.named_modules(): if isinstance(module, hook_modules): hooks.append( module.register_forward_hook(partial(module_stats_hook, name=name)) ) with set_module_mode_safe(model, training=False) as model: model(*inputs) for h in hooks: h.remove() extra_info = { "#params": len(params), } ( total_flops, total_param_dims, total_param_size, total_act_dims, total_act_size, ) = (0, 0, 0, 0, 0) if cal_params: total_param_dims, total_param_size, params = sum_param_stats( params, bar_length_max ) extra_info["total_param_dims"] = sizeof_fmt(total_param_dims, suffix="") extra_info["total_param_size"] = sizeof_fmt(total_param_size) if logging_to_stdout: print_param_stats(params) if cal_flops: total_flops, flops = sum_op_stats(flops, bar_length_max) extra_info["total_flops"] = sizeof_fmt(total_flops, suffix="OPs") if logging_to_stdout: print_op_stats(flops) if cal_activations: total_act_dims, total_act_size, activations = sum_activations_stats( activations, bar_length_max ) extra_info["total_act_dims"] = sizeof_fmt(total_act_dims, suffix="") extra_info["total_act_size"] = sizeof_fmt(total_act_size) if logging_to_stdout: print_activations_stats(activations, has_inputs) if cal_flops and cal_params and total_param_size != 0: extra_info["flops/param_size"] = "{:3.3f}".format( total_flops / total_param_size ) print_summary(**extra_info) return ( total_stats( param_size=total_param_size, param_dims=total_param_dims, flops=total_flops, act_size=total_act_size, act_dims=total_act_dims, ), stats_details(params=params, flops=flops, activations=activations), )