# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import numpy as np import megengine import megengine.autodiff as ad import megengine.optimizer as optimizer from megengine import Parameter, tensor from megengine.module import Module class Simple(Module): def __init__(self): super().__init__() self.a = Parameter([1.0], dtype=np.float32) def forward(self, x, y): x = x[y] * self.a return x class Simple2(Module): def __init__(self): super().__init__() self.a = Parameter([1.0], dtype=np.float32) def forward(self, x): x = x[1, ..., :, 0:4:2, 0:2] * self.a return x def test_advance_indexing(): net = Simple() gm = ad.GradManager().attach(net.parameters()) optim = optimizer.SGD(net.parameters(), lr=1.0) optim.clear_grad() dshape = (10, 10) raw_data = np.arange(100).reshape(dshape).astype(np.float32) raw_mask = (np.random.random_sample(dshape) > 0.5).astype(np.bool_) data = tensor(raw_data) mask = tensor(raw_mask) answer = 1.0 - raw_data[raw_mask].sum() with gm: loss = net(data, mask).sum() gm.backward(loss) optim.step() np.testing.assert_almost_equal(net.a.numpy(), np.array([answer]).astype(np.float32)) def test_advance_indexing_with_subtensor(): net = Simple2() gm = ad.GradManager().attach(net.parameters()) optim = optimizer.SGD(net.parameters(), lr=1.0) optim.clear_grad() dshape = (2, 3, 4, 3, 4, 2) raw_data = np.arange(576).reshape(dshape).astype(np.float32) data = tensor(raw_data) answer = 1.0 - raw_data[1, ..., :, 0:4:2, 0:2].sum() with gm: loss = net(data).sum() gm.backward(loss) optim.step() np.testing.assert_almost_equal(net.a.numpy(), np.array([answer]).astype(np.float32))