# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import numpy as np import megengine import megengine.autodiff as ad import megengine.optimizer as optimizer from megengine import Parameter, tensor from megengine.module import Module class Simple(Module): def __init__(self): super().__init__() self.a = Parameter([1.0], dtype=np.float32) self.b = Parameter([1.0], dtype=np.float32) def forward(self, x): x = x * self.a x = x.detach() * self.b return x def test_detach(): net = Simple() optim = optimizer.SGD(net.parameters(), lr=1.0) optim.clear_grad() gm = ad.GradManager().attach(net.parameters()) dshape = (10, 10) data = tensor(np.ones(dshape).astype(np.float32)) with gm: loss = net(data).sum() gm.backward(loss) optim.step() np.testing.assert_equal(net.a.numpy(), np.array([1.0]).astype(np.float32)) np.testing.assert_equal( net.b.numpy(), np.array([1.0 - 10.0 * 10.0]).astype(np.float32) )