# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import os import platform import re import subprocess import sys from math import ceil import numpy as np import pytest import megengine as mge import megengine.autodiff as ad import megengine.distributed as dist import megengine.functional as F from megengine.device import get_default_device, set_default_device from megengine.functional.debug_param import set_execution_strategy from megengine.module import AvgPool2d, BatchNorm2d, Conv2d, Linear, Module from megengine.optimizer import SGD from megengine.tensor import Tensor p_num = 4 def get_gpu_name(): try: gpu_info = subprocess.check_output( ["nvidia-smi", "--query-gpu=gpu_name", "--format=csv,noheader"] ) gpu_info = gpu_info.decode("ascii").split("\n")[0] except: gpu_info = "None" return gpu_info def get_cpu_name(): cpu_info = "None" try: cpu_info = subprocess.check_output(["cat", "/proc/cpuinfo"]).decode("ascii") for line in cpu_info.split("\n"): if "model name" in line: return re.sub(".*model name.*:", "", line, 1).strip() except: pass return cpu_info def get_xpu_name(): if mge.is_cuda_available(): return get_gpu_name() else: return get_cpu_name() class MnistNet(Module): def __init__(self, has_bn=True): super().__init__() self.conv0 = Conv2d(1, 20, kernel_size=5, bias=True) self.pool0 = AvgPool2d(2) self.conv1 = Conv2d(20, 20, kernel_size=5, bias=True) self.pool1 = AvgPool2d(2) self.fc0 = Linear(20 * 4 * 4, 500, bias=True) self.fc1 = Linear(500, 10, bias=True) self.bn0 = None self.bn1 = None if has_bn: self.bn0 = BatchNorm2d(20) self.bn1 = BatchNorm2d(20) def forward(self, x): x = self.conv0(x) if self.bn0: x = self.bn0(x) x = F.relu(x) x = self.pool0(x) x = self.conv1(x) if self.bn1: x = self.bn1(x) x = F.relu(x) x = self.pool1(x) x = F.flatten(x, 1) x = self.fc0(x) x = F.relu(x) x = self.fc1(x) return x def train(data, label, net, opt, gm): opt.clear_grad() with gm: pred = net(data) loss = F.nn.cross_entropy(pred, label) gm.backward(loss) opt.step() return loss def update_model(model_path): """ Update the dumped model with test cases for new reference values. The model with pre-trained weights is trained for one iter with the test data attached. The loss and updated net state dict is dumped. .. code-block:: python from test_dp_correctness import update_model update_model('mnist_model_with_test.mge') # for gpu update_model('mnist_model_with_test_cpu.mge') # for cpu """ net = MnistNet(has_bn=True) checkpoint = mge.load(model_path) net.load_state_dict(checkpoint["net_init"]) lr = checkpoint["sgd_lr"] opt = SGD(net.parameters(), lr=lr) gm = ad.GradManager().attach( net.parameters(), callbacks=[dist.make_allreduce_cb("MEAN", dist.WORLD)] ) data = Tensor(checkpoint["data"], dtype=np.float32) label = Tensor(checkpoint["label"], dtype=np.int32) opt.clear_grad() loss = train(data, label, net=net, opt=opt) opt.step() xpu_name = get_xpu_name() checkpoint.update( {"net_updated": net.state_dict(), "loss": loss.numpy(), "xpu": xpu_name} ) mge.serialization.save(checkpoint, model_path) def run_test( model_path, use_jit, use_symbolic, sublinear_memory_config=None, max_err=None, ): """ Load the model with test cases and run the training for one iter. The loss and updated weights are compared with reference value to verify the correctness. Dump a new file with updated result by calling update_model if you think the test fails due to numerical rounding errors instead of bugs. Please think twice before you do so. """ checkpoint = mge.load(model_path) data = checkpoint["data"] label = checkpoint["label"] @dist.launcher def worker(max_err): net = MnistNet(has_bn=True) net.load_state_dict(checkpoint["net_init"]) lr = checkpoint["sgd_lr"] opt = SGD(net.parameters(), lr=lr) gm = ad.GradManager().attach( net.parameters(), callbacks=[dist.make_allreduce_cb("MEAN", dist.WORLD)] ) # use same data and label for all gpu's # such that the result does not depend on number of gpu data_train = Tensor(data) label_train = Tensor(label) loss = train(data_train, label_train, net, opt, gm) np.testing.assert_allclose(loss.numpy(), checkpoint["loss"], atol=max_err) if dist.get_rank(): return for param, param_ref in zip( net.state_dict().items(), checkpoint["net_updated"].items() ): assert param[0] == param_ref[0] if "bn" in param[0]: ref = param_ref[1].reshape(param[1].shape) np.testing.assert_allclose(param[1], ref, atol=max_err) else: np.testing.assert_allclose(param[1], param_ref[1], atol=max_err) worker(max_err) @pytest.mark.require_ngpu(2) @pytest.mark.isolated_distributed def test_dp_correctness(): model_name = "mnist_model_with_test.mge" model_path = os.path.join(os.path.dirname(__file__), model_name) set_execution_strategy("HEURISTIC_REPRODUCIBLE") run_test(model_path, False, False, max_err=5e-5)